jjw commited on
Commit
6842e3e
·
1 Parent(s): 456e34d

p-31 까지의 내용

Browse files
Files changed (8) hide show
  1. app.py +99 -0
  2. label.txt +18 -0
  3. person-1.jpg +0 -0
  4. person-2.jpg +0 -0
  5. person-3.jpg +0 -0
  6. person-4.jpg +0 -0
  7. person-5.jpg +0 -0
  8. requirements.txt +6 -0
app.py ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from matplotlib import gridspec
3
+ import matplotlib.pyplot as plt
4
+ import numpy as np
5
+ from PIL import Image
6
+ import torch
7
+ from transformers import SegformerFeatureExtractor, AutoModelForSemanticSegmentation
8
+
9
+ feature_extractor = SegformerFeatureExtractor.from_pretrained(
10
+ "mattmdjaga/segformer_b2_clothes"
11
+ )
12
+ model = AutoModelForSemanticSegmentation.from_pretrained(
13
+ "mattmdjaga/segformer_b2_clothes"
14
+ )
15
+
16
+ def ade_palette():
17
+ """ADE20K palette that maps each class to RGB values."""
18
+ return [
19
+ [120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50], [4, 200, 3], [120, 120, 80],
20
+ [140, 140, 140], [204, 5, 255], [230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7],
21
+ [150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 5, 153], [6, 51, 255], [255, 153, 5]
22
+ ]
23
+
24
+ labels_list = []
25
+ with open("../Segmentation/labels.txt", "r", encoding="utf-8") as fp:
26
+ for line in fp:
27
+ labels_list.append(line.rstrip("\n"))
28
+
29
+ colormap = np.asarray(ade_palette(), dtype=np.uint8)
30
+
31
+ def label_to_color_image(label):
32
+ if label.ndim != 2:
33
+ raise ValueError("Expect 2-D input label")
34
+ if np.max(label) >= len(colormap):
35
+ raise ValueError("label value too large.")
36
+ return colormap[label]
37
+
38
+ def draw_plot(pred_img, seg_np):
39
+ fig = plt.figure(figsize=(20, 15))
40
+ grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
41
+
42
+ plt.subplot(grid_spec[0])
43
+ plt.imshow(pred_img)
44
+ plt.axis('off')
45
+
46
+ LABEL_NAMES = np.asarray(labels_list)
47
+ FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
48
+ FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
49
+
50
+ unique_labels = np.unique(seg_np.astype("uint8"))
51
+ ax = plt.subplot(grid_spec[1])
52
+ plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
53
+ ax.yaxis.tick_right()
54
+ plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
55
+ plt.xticks([], [])
56
+ ax.tick_params(width=0.0, labelsize=25)
57
+ return fig
58
+
59
+ def run_inference(input_img):
60
+ # input: numpy array from gradio -> PIL
61
+ img = Image.fromarray(input_img.astype(np.uint8)) if isinstance(input_img, np.ndarray) else input_img
62
+ if img.mode != "RGB":
63
+ img = img.convert("RGB")
64
+
65
+ inputs = feature_extractor(images=img, return_tensors="pt")
66
+ with torch.no_grad():
67
+ outputs = model(**inputs)
68
+ logits = outputs.logits # (1, C, h/4, w/4)
69
+
70
+ # resize to original
71
+ upsampled = torch.nn.functional.interpolate(
72
+ logits, size=img.size[::-1], mode="bilinear", align_corners=False
73
+ )
74
+ seg = upsampled.argmax(dim=1)[0].cpu().numpy().astype(np.uint8) # (H,W)
75
+
76
+ # colorize & overlay
77
+ color_seg = colormap[seg] # (H,W,3)
78
+ pred_img = (np.array(img) * 0.5 + color_seg * 0.5).astype(np.uint8)
79
+
80
+ fig = draw_plot(pred_img, seg)
81
+ return fig
82
+
83
+ demo = gr.Interface(
84
+ fn=run_inference,
85
+ inputs=gr.Image(type="numpy", label="Input Image"),
86
+ outputs=gr.Plot(label="Overlay + Legend"),
87
+ examples=[
88
+ "person-1.jpg",
89
+ "person-2.jpg",
90
+ "person-3.jpg",
91
+ "person-4.jpg",
92
+ "person-5.jpg"
93
+ ],
94
+ flagging_mode="never",
95
+ cache_examples=False,
96
+ )
97
+
98
+ if __name__ == "__main__":
99
+ demo.launch()
label.txt ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ background
2
+ hat
3
+ hair
4
+ sunglasses
5
+ upper-clothes
6
+ skirt
7
+ pants
8
+ dress
9
+ belt
10
+ left-shoe
11
+ right-shoe
12
+ face
13
+ left-leg
14
+ right-leg
15
+ left-arm
16
+ right-arm
17
+ bag
18
+ scarf
person-1.jpg ADDED
person-2.jpg ADDED
person-3.jpg ADDED
person-4.jpg ADDED
person-5.jpg ADDED
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ torch
2
+ transformers>=4.41.0
3
+ gradio>=4.0.0
4
+ Pillow
5
+ numpy
6
+ matplotlib