Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from matplotlib import gridspec | |
| import matplotlib.pyplot as plt | |
| import numpy as np | |
| from PIL import Image | |
| import torch | |
| from transformers import SegformerFeatureExtractor, AutoModelForSemanticSegmentation | |
| feature_extractor = SegformerFeatureExtractor.from_pretrained( | |
| "mattmdjaga/segformer_b2_clothes" | |
| ) | |
| model = AutoModelForSemanticSegmentation.from_pretrained( | |
| "mattmdjaga/segformer_b2_clothes" | |
| ) | |
| def ade_palette(): | |
| """ADE20K palette that maps each class to RGB values.""" | |
| return [ | |
| [120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50], [4, 200, 3], [120, 120, 80], | |
| [140, 140, 140], [204, 5, 255], [230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7], | |
| [150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 5, 153], [6, 51, 255], [255, 153, 5] | |
| ] | |
| labels_list = [] | |
| with open("./labels.txt", "r", encoding="utf-8") as fp: | |
| for line in fp: | |
| labels_list.append(line.rstrip("\n")) | |
| colormap = np.asarray(ade_palette(), dtype=np.uint8) | |
| def label_to_color_image(label): | |
| if label.ndim != 2: | |
| raise ValueError("Expect 2-D input label") | |
| if np.max(label) >= len(colormap): | |
| raise ValueError("label value too large.") | |
| return colormap[label] | |
| def draw_plot(pred_img, seg_np): | |
| fig = plt.figure(figsize=(20, 15)) | |
| grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1]) | |
| plt.subplot(grid_spec[0]) | |
| plt.imshow(pred_img) | |
| plt.axis('off') | |
| LABEL_NAMES = np.asarray(labels_list) | |
| FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1) | |
| FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP) | |
| unique_labels = np.unique(seg_np.astype("uint8")) | |
| ax = plt.subplot(grid_spec[1]) | |
| plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest") | |
| ax.yaxis.tick_right() | |
| plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels]) | |
| plt.xticks([], []) | |
| ax.tick_params(width=0.0, labelsize=25) | |
| return fig | |
| def run_inference(input_img): | |
| # input: numpy array from gradio -> PIL | |
| img = Image.fromarray(input_img.astype(np.uint8)) if isinstance(input_img, np.ndarray) else input_img | |
| if img.mode != "RGB": | |
| img = img.convert("RGB") | |
| inputs = feature_extractor(images=img, return_tensors="pt") | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| logits = outputs.logits # (1, C, h/4, w/4) | |
| # resize to original | |
| upsampled = torch.nn.functional.interpolate( | |
| logits, size=img.size[::-1], mode="bilinear", align_corners=False | |
| ) | |
| seg = upsampled.argmax(dim=1)[0].cpu().numpy().astype(np.uint8) # (H,W) | |
| # colorize & overlay | |
| color_seg = colormap[seg] # (H,W,3) | |
| pred_img = (np.array(img) * 0.5 + color_seg * 0.5).astype(np.uint8) | |
| fig = draw_plot(pred_img, seg) | |
| return fig | |
| demo = gr.Interface( | |
| fn=run_inference, | |
| inputs=gr.Image(type="numpy", label="Input Image"), | |
| outputs=gr.Plot(label="Overlay + Legend"), | |
| examples=[ | |
| "person-1.jpg", | |
| "person-2.jpg", | |
| "person-3.jpg", | |
| "person-4.jpg", | |
| "person-5.jpg" | |
| ], | |
| flagging_mode="never", | |
| cache_examples=False, | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |