jiuface commited on
Commit
6373ff8
·
1 Parent(s): 1fedd00
Files changed (3) hide show
  1. app.py +127 -103
  2. live_preview_helpers.py +166 -0
  3. requirements.txt +4 -4
app.py CHANGED
@@ -1,49 +1,98 @@
 
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
- #import spaces #[uncomment to use ZeroGPU]
5
  from diffusers import DiffusionPipeline
6
  import torch
 
 
 
 
7
 
 
 
 
 
 
 
 
 
8
  device = "cuda" if torch.cuda.is_available() else "cpu"
9
- model_repo_id = "stabilityai/sdxl-turbo" #Replace to the model you would like to use
10
 
11
- if torch.cuda.is_available():
12
- torch_dtype = torch.float16
13
- else:
14
- torch_dtype = torch.float32
15
 
16
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
17
- pipe = pipe.to(device)
18
 
19
- MAX_SEED = np.iinfo(np.int32).max
20
- MAX_IMAGE_SIZE = 1024
21
 
22
- #@spaces.GPU #[uncomment to use ZeroGPU]
23
- def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
 
24
 
25
- if randomize_seed:
26
- seed = random.randint(0, MAX_SEED)
27
-
28
- generator = torch.Generator().manual_seed(seed)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
- image = pipe(
31
- prompt = prompt,
32
- negative_prompt = negative_prompt,
33
- guidance_scale = guidance_scale,
34
- num_inference_steps = num_inference_steps,
35
- width = width,
36
- height = height,
37
- generator = generator
38
- ).images[0]
 
 
 
 
39
 
40
- return image, seed
 
 
 
 
 
 
 
 
 
41
 
42
- examples = [
43
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
44
- "An astronaut riding a green horse",
45
- "A delicious ceviche cheesecake slice",
46
- ]
47
 
48
  css="""
49
  #col-container {
@@ -56,87 +105,62 @@ with gr.Blocks(css=css) as demo:
56
 
57
  with gr.Column(elem_id="col-container"):
58
  gr.Markdown(f"""
59
- # Text-to-Image Gradio Template
60
  """)
61
 
62
- with gr.Row():
63
-
64
- prompt = gr.Text(
65
- label="Prompt",
66
- show_label=False,
67
- max_lines=1,
68
- placeholder="Enter your prompt",
69
- container=False,
70
- )
71
-
72
- run_button = gr.Button("Run", scale=0)
73
-
74
- result = gr.Image(label="Result", show_label=False)
75
-
76
- with gr.Accordion("Advanced Settings", open=False):
77
-
78
- negative_prompt = gr.Text(
79
- label="Negative prompt",
80
- max_lines=1,
81
- placeholder="Enter a negative prompt",
82
- visible=False,
83
- )
84
-
85
- seed = gr.Slider(
86
- label="Seed",
87
- minimum=0,
88
- maximum=MAX_SEED,
89
- step=1,
90
- value=0,
91
- )
92
-
93
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
94
-
95
  with gr.Row():
96
 
97
- width = gr.Slider(
98
- label="Width",
99
- minimum=256,
100
- maximum=MAX_IMAGE_SIZE,
101
- step=32,
102
- value=1024, #Replace with defaults that work for your model
103
  )
104
 
105
- height = gr.Slider(
106
- label="Height",
107
- minimum=256,
108
- maximum=MAX_IMAGE_SIZE,
109
- step=32,
110
- value=1024, #Replace with defaults that work for your model
111
- )
112
-
113
- with gr.Row():
114
 
115
- guidance_scale = gr.Slider(
116
- label="Guidance scale",
117
- minimum=0.0,
118
- maximum=10.0,
119
- step=0.1,
120
- value=0.0, #Replace with defaults that work for your model
121
- )
122
-
123
- num_inference_steps = gr.Slider(
124
- label="Number of inference steps",
125
- minimum=1,
126
- maximum=50,
127
- step=1,
128
- value=2, #Replace with defaults that work for your model
129
- )
130
-
131
- gr.Examples(
132
- examples = examples,
133
- inputs = [prompt]
134
- )
 
 
 
 
 
 
 
 
 
135
  gr.on(
136
  triggers=[run_button.click, prompt.submit],
137
- fn = infer,
138
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
139
- outputs = [result, seed]
140
  )
141
 
142
  demo.queue().launch()
 
1
+ import os
2
  import gradio as gr
3
  import numpy as np
4
  import random
5
+ import spaces
6
  from diffusers import DiffusionPipeline
7
  import torch
8
+ import json
9
+ import logging
10
+ from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
11
+ from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
12
 
13
+ from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
14
+ import copy
15
+ import random
16
+ import time
17
+
18
+
19
+ # init
20
+ dtype = torch.bfloat16
21
  device = "cuda" if torch.cuda.is_available() else "cpu"
22
+ base_model = "black-forest-labs/FLUX.1-dev"
23
 
24
+ taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
25
+ good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
26
+ pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device)
 
27
 
28
+ MAX_SEED = 2**32-1
 
29
 
30
+ pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
 
31
 
32
+ class calculateDuration:
33
+ def __init__(self, activity_name=""):
34
+ self.activity_name = activity_name
35
 
36
+ def __enter__(self):
37
+ self.start_time = time.time()
38
+ return self
39
+
40
+ def __exit__(self, exc_type, exc_value, traceback):
41
+ self.end_time = time.time()
42
+ self.elapsed_time = self.end_time - self.start_time
43
+ if self.activity_name:
44
+ print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
45
+ else:
46
+ print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
47
+
48
+
49
+ @spaces.GPU(duration=70)
50
+ def generate_image(prompt, steps, seed, cfg_scale, width, height, lora_scale, progress):
51
+ pipe.to("cuda")
52
+ generator = torch.Generator(device="cuda").manual_seed(seed)
53
+ with calculateDuration("Generating image"):
54
+ # Generate image
55
+ for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
56
+ prompt=prompt,
57
+ num_inference_steps=steps,
58
+ guidance_scale=cfg_scale,
59
+ width=width,
60
+ height=height,
61
+ generator=generator,
62
+ joint_attention_kwargs={"scale": lora_scale},
63
+ output_type="pil",
64
+ good_vae=good_vae,
65
+ ):
66
+ yield img
67
+
68
+
69
+ def run_lora(prompt, cfg_scale, steps, lora_repo, lora_name, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
70
 
71
+ with calculateDuration("Unloading LoRA"):
72
+ pipe.unload_lora_weights()
73
+
74
+ # Load LoRA weights
75
+ with calculateDuration(f"Loading LoRA weights for {lora_repo} {lora_name}"):
76
+ pipe.load_lora_weights(lora_repo, weight_name=lora_name)
77
+
78
+ # Set random seed for reproducibility
79
+ with calculateDuration("Randomizing seed"):
80
+ if randomize_seed:
81
+ seed = random.randint(0, MAX_SEED)
82
+
83
+ image_generator = generate_image(prompt, steps, seed, cfg_scale, width, height, lora_scale, progress)
84
 
85
+ # Consume the generator to get the final image
86
+ final_image = None
87
+ step_counter = 0
88
+ for image in image_generator:
89
+ step_counter+=1
90
+ final_image = image
91
+ progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
92
+ yield image, seed, gr.update(value=progress_bar, visible=True)
93
+
94
+ yield final_image, seed, gr.update(value=progress_bar, visible=False)
95
 
 
 
 
 
 
96
 
97
  css="""
98
  #col-container {
 
105
 
106
  with gr.Column(elem_id="col-container"):
107
  gr.Markdown(f"""
108
+ # Simple flux with lora
109
  """)
110
 
111
+ with gr.Column():
112
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113
  with gr.Row():
114
 
115
+ prompt = gr.Text(
116
+ label="Prompt",
117
+ show_label=False,
118
+ max_lines=1,
119
+ placeholder="Enter your prompt",
120
+ container=False,
121
  )
122
 
123
+ lora_repo = gr.Text(
124
+ label="Repo",
125
+ max_lines=1,
126
+ placeholder="Enter a lora repo",
127
+ visible=False,
128
+ )
 
 
 
129
 
130
+ lora_name = gr.Text(
131
+ label="Weights",
132
+ max_lines=1,
133
+ placeholder="Enter a lora weights",
134
+ visible=False,
135
+ )
136
+ run_button = gr.Button("Run", scale=0)
137
+
138
+ with gr.Accordion("Advanced Settings", open=False):
139
+
140
+ with gr.Row():
141
+ seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
142
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
143
+ lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=3, step=0.01, value=0.95)
144
+
145
+ with gr.Row():
146
+ width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
147
+ height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
148
+
149
+ with gr.Row():
150
+ cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
151
+ steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
152
+
153
+
154
+
155
+ with gr.Row():
156
+ progress_bar = gr.Markdown(elem_id="progress",visible=False)
157
+ result = gr.Image(label="Result", show_label=False)
158
+
159
  gr.on(
160
  triggers=[run_button.click, prompt.submit],
161
+ fn = run_lora,
162
+ inputs = [prompt, cfg_scale, steps, lora_repo, lora_name, randomize_seed, seed, width, height, lora_scale],
163
+ outputs=[result, seed, progress_bar]
164
  )
165
 
166
  demo.queue().launch()
live_preview_helpers.py ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+ from diffusers import FluxPipeline, AutoencoderTiny, FlowMatchEulerDiscreteScheduler
4
+ from typing import Any, Dict, List, Optional, Union
5
+
6
+ # Helper functions
7
+ def calculate_shift(
8
+ image_seq_len,
9
+ base_seq_len: int = 256,
10
+ max_seq_len: int = 4096,
11
+ base_shift: float = 0.5,
12
+ max_shift: float = 1.16,
13
+ ):
14
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
15
+ b = base_shift - m * base_seq_len
16
+ mu = image_seq_len * m + b
17
+ return mu
18
+
19
+ def retrieve_timesteps(
20
+ scheduler,
21
+ num_inference_steps: Optional[int] = None,
22
+ device: Optional[Union[str, torch.device]] = None,
23
+ timesteps: Optional[List[int]] = None,
24
+ sigmas: Optional[List[float]] = None,
25
+ **kwargs,
26
+ ):
27
+ if timesteps is not None and sigmas is not None:
28
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
29
+ if timesteps is not None:
30
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
31
+ timesteps = scheduler.timesteps
32
+ num_inference_steps = len(timesteps)
33
+ elif sigmas is not None:
34
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
35
+ timesteps = scheduler.timesteps
36
+ num_inference_steps = len(timesteps)
37
+ else:
38
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
39
+ timesteps = scheduler.timesteps
40
+ return timesteps, num_inference_steps
41
+
42
+ # FLUX pipeline function
43
+ @torch.inference_mode()
44
+ def flux_pipe_call_that_returns_an_iterable_of_images(
45
+ self,
46
+ prompt: Union[str, List[str]] = None,
47
+ prompt_2: Optional[Union[str, List[str]]] = None,
48
+ height: Optional[int] = None,
49
+ width: Optional[int] = None,
50
+ num_inference_steps: int = 28,
51
+ timesteps: List[int] = None,
52
+ guidance_scale: float = 3.5,
53
+ num_images_per_prompt: Optional[int] = 1,
54
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
55
+ latents: Optional[torch.FloatTensor] = None,
56
+ prompt_embeds: Optional[torch.FloatTensor] = None,
57
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
58
+ output_type: Optional[str] = "pil",
59
+ return_dict: bool = True,
60
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
61
+ max_sequence_length: int = 512,
62
+ good_vae: Optional[Any] = None,
63
+ ):
64
+ height = height or self.default_sample_size * self.vae_scale_factor
65
+ width = width or self.default_sample_size * self.vae_scale_factor
66
+
67
+ # 1. Check inputs
68
+ self.check_inputs(
69
+ prompt,
70
+ prompt_2,
71
+ height,
72
+ width,
73
+ prompt_embeds=prompt_embeds,
74
+ pooled_prompt_embeds=pooled_prompt_embeds,
75
+ max_sequence_length=max_sequence_length,
76
+ )
77
+
78
+ self._guidance_scale = guidance_scale
79
+ self._joint_attention_kwargs = joint_attention_kwargs
80
+ self._interrupt = False
81
+
82
+ # 2. Define call parameters
83
+ batch_size = 1 if isinstance(prompt, str) else len(prompt)
84
+ device = self._execution_device
85
+
86
+ # 3. Encode prompt
87
+ lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
88
+ prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
89
+ prompt=prompt,
90
+ prompt_2=prompt_2,
91
+ prompt_embeds=prompt_embeds,
92
+ pooled_prompt_embeds=pooled_prompt_embeds,
93
+ device=device,
94
+ num_images_per_prompt=num_images_per_prompt,
95
+ max_sequence_length=max_sequence_length,
96
+ lora_scale=lora_scale,
97
+ )
98
+ # 4. Prepare latent variables
99
+ num_channels_latents = self.transformer.config.in_channels // 4
100
+ latents, latent_image_ids = self.prepare_latents(
101
+ batch_size * num_images_per_prompt,
102
+ num_channels_latents,
103
+ height,
104
+ width,
105
+ prompt_embeds.dtype,
106
+ device,
107
+ generator,
108
+ latents,
109
+ )
110
+ # 5. Prepare timesteps
111
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
112
+ image_seq_len = latents.shape[1]
113
+ mu = calculate_shift(
114
+ image_seq_len,
115
+ self.scheduler.config.base_image_seq_len,
116
+ self.scheduler.config.max_image_seq_len,
117
+ self.scheduler.config.base_shift,
118
+ self.scheduler.config.max_shift,
119
+ )
120
+ timesteps, num_inference_steps = retrieve_timesteps(
121
+ self.scheduler,
122
+ num_inference_steps,
123
+ device,
124
+ timesteps,
125
+ sigmas,
126
+ mu=mu,
127
+ )
128
+ self._num_timesteps = len(timesteps)
129
+
130
+ # Handle guidance
131
+ guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None
132
+
133
+ # 6. Denoising loop
134
+ for i, t in enumerate(timesteps):
135
+ if self.interrupt:
136
+ continue
137
+
138
+ timestep = t.expand(latents.shape[0]).to(latents.dtype)
139
+
140
+ noise_pred = self.transformer(
141
+ hidden_states=latents,
142
+ timestep=timestep / 1000,
143
+ guidance=guidance,
144
+ pooled_projections=pooled_prompt_embeds,
145
+ encoder_hidden_states=prompt_embeds,
146
+ txt_ids=text_ids,
147
+ img_ids=latent_image_ids,
148
+ joint_attention_kwargs=self.joint_attention_kwargs,
149
+ return_dict=False,
150
+ )[0]
151
+ # Yield intermediate result
152
+ latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor)
153
+ latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor
154
+ image = self.vae.decode(latents_for_image, return_dict=False)[0]
155
+ yield self.image_processor.postprocess(image, output_type=output_type)[0]
156
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
157
+ torch.cuda.empty_cache()
158
+
159
+
160
+ # Final image using good_vae
161
+ latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
162
+ latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor
163
+ image = good_vae.decode(latents, return_dict=False)[0]
164
+ self.maybe_free_model_hooks()
165
+ torch.cuda.empty_cache()
166
+ yield self.image_processor.postprocess(image, output_type=output_type)[0]
requirements.txt CHANGED
@@ -1,6 +1,6 @@
1
- accelerate
2
- diffusers
3
- invisible_watermark
4
  torch
 
 
5
  transformers
6
- xformers
 
 
 
 
 
1
  torch
2
+ git+https://github.com/huggingface/diffusers@3b604e8c384631e1f66a4fd9076ed5e7e2b08686
3
+ spaces
4
  transformers
5
+ peft
6
+ sentencepiece