jiuface commited on
Commit
66c5ac5
1 Parent(s): 8b6ee19

update interface

Browse files
Files changed (1) hide show
  1. app.py +8 -5
app.py CHANGED
@@ -166,16 +166,19 @@ with gr.Blocks() as demo:
166
  with gr.Row():
167
  with gr.Column():
168
  image = gr.Image(type='pil', label='Upload image')
169
- image_url = gr.Textbox(label='Image url', placeholder='Enter text prompts (Optional)')
170
  task_prompt = gr.Dropdown(
171
  ['<OD>', '<CAPTION_TO_PHRASE_GROUNDING>', '<DENSE_REGION_CAPTION>', '<REGION_PROPOSAL>', '<OCR_WITH_REGION>', '<REFERRING_EXPRESSION_SEGMENTATION>', '<REGION_TO_SEGMENTATION>', '<OPEN_VOCABULARY_DETECTION>', '<REGION_TO_CATEGORY>', '<REGION_TO_DESCRIPTION>'], value="<CAPTION_TO_PHRASE_GROUNDING>", label="Task Prompt", info=update_task_info("<CAPTION_TO_PHRASE_GROUNDING>")
172
  )
173
- dilate = gr.Slider(label="dilate mask", minimum=0, maximum=50, value=10, step=1, info="The dilate parameter controls the expansion of the mask's white areas by a specified number of pixels. Increasing this value will enlarge the white regions, which can help in smoothing out the mask's edges or covering more area in the segmentation.")
174
- merge_masks = gr.Checkbox(label="Merge masks", value=False, info="The merge_masks parameter combines all the individual masks into a single mask. When enabled, the separate masks generated for different objects or regions will be merged into one unified mask, which can simplify further processing or visualization.")
175
- return_rectangles = gr.Checkbox(label="Return Rectangles", value=False, info="The return_rectangles parameter, when enabled, generates masks as filled white rectangles corresponding to the bounding boxes of detected objects, rather than detailed contours or segments. This option is useful for simpler, box-based visualizations.")
176
- invert_mask = gr.Checkbox(label="invert mask", value=False, info="The invert_mask option allows you to reverse the colors of the generated mask, changing black areas to white and white areas to black. This can be useful for visualizing or processing the mask in a different context.")
177
  text_prompt = gr.Textbox(label='Text prompt', placeholder='Enter text prompts')
178
  submit_button = gr.Button(value='Submit', variant='primary')
 
 
 
 
 
 
 
179
  with gr.Column():
180
  image_gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery", columns=[3], rows=[1], object_fit="contain", height="auto")
181
  # json_result = gr.Code(label="JSON Result", language="json")
 
166
  with gr.Row():
167
  with gr.Column():
168
  image = gr.Image(type='pil', label='Upload image')
169
+ image_url = gr.Textbox(label='Image url', placeholder='Enter text prompts (Optional)', info="The image_url parameter allows you to input a URL pointing to an image.")
170
  task_prompt = gr.Dropdown(
171
  ['<OD>', '<CAPTION_TO_PHRASE_GROUNDING>', '<DENSE_REGION_CAPTION>', '<REGION_PROPOSAL>', '<OCR_WITH_REGION>', '<REFERRING_EXPRESSION_SEGMENTATION>', '<REGION_TO_SEGMENTATION>', '<OPEN_VOCABULARY_DETECTION>', '<REGION_TO_CATEGORY>', '<REGION_TO_DESCRIPTION>'], value="<CAPTION_TO_PHRASE_GROUNDING>", label="Task Prompt", info=update_task_info("<CAPTION_TO_PHRASE_GROUNDING>")
172
  )
 
 
 
 
173
  text_prompt = gr.Textbox(label='Text prompt', placeholder='Enter text prompts')
174
  submit_button = gr.Button(value='Submit', variant='primary')
175
+
176
+ with gr.Accordion("Advance Settings", open=False):
177
+ dilate = gr.Slider(label="dilate mask", minimum=0, maximum=50, value=10, step=1, info="The dilate parameter controls the expansion of the mask's white areas by a specified number of pixels. Increasing this value will enlarge the white regions, which can help in smoothing out the mask's edges or covering more area in the segmentation.")
178
+ merge_masks = gr.Checkbox(label="Merge masks", value=False, info="The merge_masks parameter combines all the individual masks into a single mask. When enabled, the separate masks generated for different objects or regions will be merged into one unified mask, which can simplify further processing or visualization.")
179
+ return_rectangles = gr.Checkbox(label="Return Rectangles", value=False, info="The return_rectangles parameter, when enabled, generates masks as filled white rectangles corresponding to the bounding boxes of detected objects, rather than detailed contours or segments. This option is useful for simpler, box-based visualizations.")
180
+ invert_mask = gr.Checkbox(label="invert mask", value=False, info="The invert_mask option allows you to reverse the colors of the generated mask, changing black areas to white and white areas to black. This can be useful for visualizing or processing the mask in a different context.")
181
+
182
  with gr.Column():
183
  image_gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery", columns=[3], rows=[1], object_fit="contain", height="auto")
184
  # json_result = gr.Code(label="JSON Result", language="json")