Spaces:
Runtime error
Runtime error
fixes error gen
Browse files- app.py +4 -22
- story_gen.py +0 -221
- story_gen_test.py +0 -34
app.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
import streamlit as st
|
2 |
-
from story_gen import StoryGenerator
|
3 |
-
import plotly.figure_factory as ff
|
4 |
import plotly.express as px
|
5 |
import random
|
6 |
import numpy as np
|
@@ -12,9 +11,11 @@ container_mode = st.sidebar.container()
|
|
12 |
container_guide = st.container()
|
13 |
container_param = st.sidebar.container()
|
14 |
container_button = st.sidebar.container()
|
|
|
15 |
mode = container_mode.radio(
|
16 |
"Select a mode",
|
17 |
-
('Create Statistics', 'Play Storytelling'), index=0)
|
|
|
18 |
choices_first_sentence = [
|
19 |
'Custom',
|
20 |
'Hello, I\'m a language model,',
|
@@ -93,14 +94,6 @@ elif mode == 'Play Storytelling':
|
|
93 |
'score': first_emotion['score']}]
|
94 |
if 'full_story' not in st.session_state:
|
95 |
st.session_state.full_story = story_till_now
|
96 |
-
# # , placeholder="Start writing your story...")
|
97 |
-
# story_till_now = st.text_input(
|
98 |
-
# label='First Sentence', value='Hello, I\'m a language model,')
|
99 |
-
|
100 |
-
# num_generation = st.sidebar.slider(
|
101 |
-
# label='Number of generation', min_value=1, max_value=100, value=10, step=1)
|
102 |
-
# length = st.sidebar.slider(label='Length of the generated sentence',
|
103 |
-
# min_value=1, max_value=100, value=20, step=1)
|
104 |
container_button = container_button.columns([1, 1, 1])
|
105 |
heading_container = st.container()
|
106 |
col_turn, col_sentence, col_emo = st.columns([1, 8, 2])
|
@@ -121,17 +114,6 @@ elif mode == 'Play Storytelling':
|
|
121 |
col_sentence.markdown(step['sentence'])
|
122 |
col_emo.markdown(
|
123 |
f'{step["emotion"]} {np.round(step["score"], 3)}', unsafe_allow_html=False)
|
124 |
-
# i=0
|
125 |
-
# while True:
|
126 |
-
# story_till_now, emotion, new_sentence = gen.next_sentence(
|
127 |
-
# story_till_now, length)
|
128 |
-
# col_sentence.text(new_sentence)
|
129 |
-
# col_emo.markdown(f'{emotion["label"]} {np.round(emotion["score"], 3)}', unsafe_allow_html=False)
|
130 |
-
# # col_emo.markdown(f'The last sentence has the "{emotion["label"]}" **Emotion** with a confidence score of {emotion["score"]}.')
|
131 |
-
# new_input_sentence = st.text_input(label='Next Sentence', key=f'next_sentence_{i}')
|
132 |
-
# story_till_now += ' ' + new_input_sentence
|
133 |
-
|
134 |
-
# i+=1
|
135 |
|
136 |
else:
|
137 |
step = st.session_state.sentence_list[0]
|
|
|
1 |
import streamlit as st
|
2 |
+
from lib.story_gen import StoryGenerator
|
|
|
3 |
import plotly.express as px
|
4 |
import random
|
5 |
import numpy as np
|
|
|
11 |
container_guide = st.container()
|
12 |
container_param = st.sidebar.container()
|
13 |
container_button = st.sidebar.container()
|
14 |
+
|
15 |
mode = container_mode.radio(
|
16 |
"Select a mode",
|
17 |
+
('Probability Emote', 'Create Statistics', 'Play Storytelling'), index=0)
|
18 |
+
|
19 |
choices_first_sentence = [
|
20 |
'Custom',
|
21 |
'Hello, I\'m a language model,',
|
|
|
94 |
'score': first_emotion['score']}]
|
95 |
if 'full_story' not in st.session_state:
|
96 |
st.session_state.full_story = story_till_now
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
container_button = container_button.columns([1, 1, 1])
|
98 |
heading_container = st.container()
|
99 |
col_turn, col_sentence, col_emo = st.columns([1, 8, 2])
|
|
|
114 |
col_sentence.markdown(step['sentence'])
|
115 |
col_emo.markdown(
|
116 |
f'{step["emotion"]} {np.round(step["score"], 3)}', unsafe_allow_html=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
else:
|
119 |
step = st.session_state.sentence_list[0]
|
story_gen.py
DELETED
@@ -1,221 +0,0 @@
|
|
1 |
-
|
2 |
-
import sys
|
3 |
-
import time
|
4 |
-
|
5 |
-
import printj
|
6 |
-
from transformers import pipeline # , set_seed
|
7 |
-
import numpy as np
|
8 |
-
import pandas as pd
|
9 |
-
# import nltk
|
10 |
-
import re
|
11 |
-
import streamlit as st
|
12 |
-
|
13 |
-
|
14 |
-
class StoryGenerator:
|
15 |
-
def __init__(self):
|
16 |
-
self.initialise_models()
|
17 |
-
self.stats_df = pd.DataFrame(data=[], columns=[])
|
18 |
-
self.stories = []
|
19 |
-
self.data = []
|
20 |
-
|
21 |
-
@staticmethod
|
22 |
-
@st.cache(allow_output_mutation=True)
|
23 |
-
def get_generator():
|
24 |
-
return pipeline('text-generation', model='gpt2')
|
25 |
-
|
26 |
-
@staticmethod
|
27 |
-
@st.cache(allow_output_mutation=True)
|
28 |
-
def get_classifier():
|
29 |
-
return pipeline("text-classification",
|
30 |
-
model="j-hartmann/emotion-english-distilroberta-base", return_all_scores=True)
|
31 |
-
|
32 |
-
def initialise_models(self):
|
33 |
-
# start = time.time()
|
34 |
-
self.generator = self.get_generator()
|
35 |
-
self.classifier = self.get_classifier()
|
36 |
-
# initialising_time = time.time()-start
|
37 |
-
# print(f'Initialising Time: {initialising_time}')
|
38 |
-
# set_seed(42)
|
39 |
-
# sys.exit()
|
40 |
-
|
41 |
-
def reset():
|
42 |
-
self.clear_stories()
|
43 |
-
self.clear_stats()
|
44 |
-
|
45 |
-
def clear_stories(self):
|
46 |
-
self.data = []
|
47 |
-
self.stories = []
|
48 |
-
|
49 |
-
def clear_stats(self):
|
50 |
-
self.stats_df = pd.DataFrame(data=[], columns=[])
|
51 |
-
|
52 |
-
def get_emotion(self, text):
|
53 |
-
emotions = self.classifier(text)
|
54 |
-
emotion = max(emotions[0], key=lambda x: x['score'])
|
55 |
-
return emotion
|
56 |
-
|
57 |
-
@staticmethod
|
58 |
-
def get_num_token(text):
|
59 |
-
# return len(nltk.word_tokenize(text))
|
60 |
-
return len(re.findall(r'\w+', text))
|
61 |
-
|
62 |
-
@staticmethod
|
63 |
-
def check_show_emotion(confidence_score, frequency, w):
|
64 |
-
frequency_penalty = 1 - frequency
|
65 |
-
probability_emote = w * confidence_score + (1-w) * frequency_penalty
|
66 |
-
return probability_emote > np.random.random_sample()
|
67 |
-
|
68 |
-
def story(self,
|
69 |
-
story_till_now="Hello, I'm a language model,",
|
70 |
-
num_generation=4,
|
71 |
-
length=10):
|
72 |
-
# last_length = 0
|
73 |
-
|
74 |
-
for i in range(num_generation):
|
75 |
-
last_length = len(story_till_now)
|
76 |
-
genreate_robot_sentence = self.generator(story_till_now, max_length=self.get_num_token(story_till_now) +
|
77 |
-
length, num_return_sequences=1)
|
78 |
-
story_till_now = genreate_robot_sentence[0]['generated_text']
|
79 |
-
new_sentence = story_till_now[last_length:]
|
80 |
-
emotion = self.get_emotion(new_sentence)
|
81 |
-
# printj.yellow(f'Sentence {i}:')
|
82 |
-
# story_to_print = f'{printj.ColorText.cyan(story_till_now[:last_length])}{printj.ColorText.green(story_till_now[last_length:])}\n'
|
83 |
-
# print(story_to_print)
|
84 |
-
# printj.purple(f'Emotion: {emotion}')
|
85 |
-
return story_till_now, emotion
|
86 |
-
|
87 |
-
def next_sentence(self,
|
88 |
-
story_till_now="Hello, I'm a language model,",
|
89 |
-
length=10):
|
90 |
-
last_length = len(story_till_now)
|
91 |
-
genreate_robot_sentence = self.generator(story_till_now, max_length=self.get_num_token(story_till_now) +
|
92 |
-
length, num_return_sequences=1)
|
93 |
-
story_till_now = genreate_robot_sentence[0]['generated_text']
|
94 |
-
new_sentence = story_till_now[last_length:]
|
95 |
-
emotion = self.get_emotion(new_sentence)
|
96 |
-
return story_till_now, emotion, new_sentence
|
97 |
-
|
98 |
-
|
99 |
-
def auto_ist(self,
|
100 |
-
story_till_now="Hello, I'm a language model,",
|
101 |
-
num_generation=4,
|
102 |
-
length=20, reaction_weight=0.5):
|
103 |
-
stats_df = pd.DataFrame(data=[], columns=[])
|
104 |
-
stats_dict = dict()
|
105 |
-
num_reactions = 0
|
106 |
-
reaction_frequency = 0
|
107 |
-
emotion = self.get_emotion(story_till_now) # first line emotion
|
108 |
-
story_data = [{
|
109 |
-
'sentence': story_till_now,
|
110 |
-
'turn': 'first',
|
111 |
-
'emotion': emotion['label'],
|
112 |
-
'confidence_score': emotion['score'],
|
113 |
-
}]
|
114 |
-
for i in range(num_generation):
|
115 |
-
# Text generation for User
|
116 |
-
last_length = len(story_till_now)
|
117 |
-
printj.cyan(story_till_now)
|
118 |
-
printj.red.bold_on_white(
|
119 |
-
f'loop: {i}; generate user text; length: {last_length}')
|
120 |
-
genreate_user_sentence = self.generator(story_till_now, max_length=self.get_num_token(
|
121 |
-
story_till_now)+length, num_return_sequences=1)
|
122 |
-
story_till_now = genreate_user_sentence[0]['generated_text']
|
123 |
-
new_sentence_user = story_till_now[last_length:]
|
124 |
-
|
125 |
-
printj.red.bold_on_white(f'loop: {i}; check emotion')
|
126 |
-
# Emotion self.classifier for User
|
127 |
-
emotion_user = self.get_emotion(new_sentence_user)
|
128 |
-
if emotion_user['label'] == 'neutral':
|
129 |
-
show_emotion_user = False
|
130 |
-
else:
|
131 |
-
reaction_frequency = num_reactions/(i+1)
|
132 |
-
show_emotion_user = self.check_show_emotion(
|
133 |
-
confidence_score=emotion_user['score'], frequency=reaction_frequency, w=reaction_weight)
|
134 |
-
if show_emotion_user:
|
135 |
-
num_reactions += 1
|
136 |
-
|
137 |
-
story_data.append({
|
138 |
-
'sentence': new_sentence_user,
|
139 |
-
'turn': 'user',
|
140 |
-
'emotion': emotion_user['label'],
|
141 |
-
'confidence_score': emotion_user['score'],
|
142 |
-
})
|
143 |
-
stats_dict['sentence_no'] = i
|
144 |
-
stats_dict['turn'] = 'user'
|
145 |
-
stats_dict['sentence'] = new_sentence_user
|
146 |
-
stats_dict['show_emotion'] = show_emotion_user
|
147 |
-
stats_dict['emotion_label'] = emotion_user['label']
|
148 |
-
stats_dict['emotion_score'] = emotion_user['score']
|
149 |
-
stats_dict['num_reactions'] = num_reactions
|
150 |
-
stats_dict['reaction_frequency'] = reaction_frequency
|
151 |
-
stats_dict['reaction_weight'] = reaction_weight
|
152 |
-
stats_df = pd.concat(
|
153 |
-
[stats_df, pd.DataFrame(stats_dict, index=[f'idx_{i}'])])
|
154 |
-
# Text generation for Robot
|
155 |
-
last_length = len(story_till_now)
|
156 |
-
printj.cyan(story_till_now)
|
157 |
-
printj.red.bold_on_white(
|
158 |
-
f'loop: {i}; generate robot text; length: {last_length}')
|
159 |
-
genreate_robot_sentence = self.generator(story_till_now, max_length=self.get_num_token(
|
160 |
-
story_till_now)+length, num_return_sequences=1)
|
161 |
-
story_till_now = genreate_robot_sentence[0]['generated_text']
|
162 |
-
new_sentence_robot = story_till_now[last_length:]
|
163 |
-
emotion_robot = self.get_emotion(new_sentence_robot)
|
164 |
-
|
165 |
-
story_data.append({
|
166 |
-
'sentence': new_sentence_robot,
|
167 |
-
'turn': 'robot',
|
168 |
-
'emotion': emotion_robot['label'],
|
169 |
-
'confidence_score': emotion_robot['score'],
|
170 |
-
})
|
171 |
-
stats_dict['sentence_no'] = i
|
172 |
-
stats_dict['turn'] = 'robot'
|
173 |
-
stats_dict['sentence'] = new_sentence_robot
|
174 |
-
stats_dict['show_emotion'] = None
|
175 |
-
stats_dict['emotion_label'] = emotion_robot['label']
|
176 |
-
stats_dict['emotion_score'] = emotion_robot['score']
|
177 |
-
stats_dict['num_reactions'] = None
|
178 |
-
stats_dict['reaction_frequency'] = None
|
179 |
-
stats_dict['reaction_weight'] = None
|
180 |
-
stats_df = pd.concat(
|
181 |
-
[stats_df, pd.DataFrame(stats_dict, index=[f'idx_{i}'])])
|
182 |
-
|
183 |
-
return stats_df, story_till_now, story_data
|
184 |
-
|
185 |
-
def get_stats(self,
|
186 |
-
story_till_now="Hello, I'm a language model,",
|
187 |
-
num_generation=4,
|
188 |
-
length=20, reaction_weight=-1, num_tests=2):
|
189 |
-
use_random_w = reaction_weight == -1
|
190 |
-
# self.stories = []
|
191 |
-
try:
|
192 |
-
num_rows = max(self.stats_df.story_id)+1
|
193 |
-
except Exception:
|
194 |
-
num_rows = 0
|
195 |
-
for story_id in range(num_tests):
|
196 |
-
if use_random_w:
|
197 |
-
# reaction_weight = np.random.random_sample()
|
198 |
-
reaction_weight = np.round(np.random.random_sample(), 1)
|
199 |
-
stats_df0, _story_till_now, story_data = self.auto_ist(
|
200 |
-
story_till_now=story_till_now,
|
201 |
-
num_generation=num_generations,
|
202 |
-
length=length, reaction_weight=reaction_weight)
|
203 |
-
stats_df0.insert(loc=0, column='story_id', value=story_id+num_rows)
|
204 |
-
|
205 |
-
# stats_df0['story_id'] = story_id
|
206 |
-
self.stats_df = pd.concat([self.stats_df, stats_df0])
|
207 |
-
printj.yellow(f'story_id: {story_id}')
|
208 |
-
printj.green(stats_df0)
|
209 |
-
self.stories.append(_story_till_now)
|
210 |
-
self.data.append(story_data)
|
211 |
-
self.stats_df = self.stats_df.reset_index(drop=True)
|
212 |
-
print(self.stats_df)
|
213 |
-
|
214 |
-
def save_stats(self, path='pandas_simple.xlsx'):
|
215 |
-
writer = pd.ExcelWriter(path, engine='xlsxwriter')
|
216 |
-
|
217 |
-
# Convert the dataframe to an XlsxWriter Excel object.
|
218 |
-
self.stats_df.to_excel(writer, sheet_name='IST')
|
219 |
-
|
220 |
-
# Close the Pandas Excel writer and output the Excel file.
|
221 |
-
writer.save()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
story_gen_test.py
DELETED
@@ -1,34 +0,0 @@
|
|
1 |
-
# %%
|
2 |
-
import printj
|
3 |
-
from story_gen import StoryGenerator
|
4 |
-
|
5 |
-
gen = StoryGenerator()
|
6 |
-
# # %%
|
7 |
-
# story_till_now, emotion = gen.story(story_till_now='Hello, I\'m a language model,', num_generation=3, length=10)
|
8 |
-
# printj.purple(story_till_now)
|
9 |
-
# printj.yellow(emotion)
|
10 |
-
|
11 |
-
|
12 |
-
# %%
|
13 |
-
gen.get_stats(story_till_now="For myriad of eons i’ve forgotten who I really was, harvesting the essence of all existence.",
|
14 |
-
length=10, num_generation=3, num_tests=50)
|
15 |
-
|
16 |
-
# %%
|
17 |
-
gen.save_stats('/home/jitesh/haru/ist/results/a.xlsx')
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
# %%
|
23 |
-
data=gen.stats_df[gen.stats_df.sentence_no==3]
|
24 |
-
import seaborn as sns
|
25 |
-
sns.set_theme(style="whitegrid")
|
26 |
-
# ax = sns.violinplot(x="day", y="total_bill", data=tips)
|
27 |
-
ax = sns.violinplot(x="reaction_weight", y="num_reactions", data=data).set_title('Analysing ProbabilityEmote (Max reactions=3)')
|
28 |
-
# %%
|
29 |
-
|
30 |
-
gen.stats_df[gen.stats_df.sentence_no==3]
|
31 |
-
# %%
|
32 |
-
import re
|
33 |
-
len(re.findall(r'\w+', 'line ive '))
|
34 |
-
# %%
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|