DeepAcceptor / RF.py
jinysun's picture
Upload 2 files
6857883
# -*- coding: utf-8 -*-
"""
Created on Mon Sep 4 10:38:59 2023
@author: BM109X32G-10GPU-02
"""
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import make_blobs
import json
import numpy as np
import math
from tqdm import tqdm
from scipy import sparse
from sklearn.metrics import median_absolute_error,r2_score, mean_absolute_error,mean_squared_error
import pickle
import pandas as pd
import matplotlib.pyplot as plt
from rdkit import Chem
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from sklearn.neural_network import MLPClassifier
from sklearn.svm import SVC
from tensorflow.keras.models import Model, load_model
from tensorflow.keras.layers import Dense, Input, Flatten, Conv1D, MaxPooling1D, concatenate
from tensorflow.keras import metrics, optimizers
from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau
def split_smiles(smiles, kekuleSmiles=True):
try:
mol = Chem.MolFromSmiles(smiles)
smiles = Chem.MolToSmiles(mol, kekuleSmiles=kekuleSmiles)
except:
pass
splitted_smiles = []
for j, k in enumerate(smiles):
if len(smiles) == 1:
return [smiles]
if j == 0:
if k.isupper() and smiles[j + 1].islower() and smiles[j + 1] != "c":
splitted_smiles.append(k + smiles[j + 1])
else:
splitted_smiles.append(k)
elif j != 0 and j < len(smiles) - 1:
if k.isupper() and smiles[j + 1].islower() and smiles[j + 1] != "c":
splitted_smiles.append(k + smiles[j + 1])
elif k.islower() and smiles[j - 1].isupper() and k != "c":
pass
else:
splitted_smiles.append(k)
elif j == len(smiles) - 1:
if k.islower() and smiles[j - 1].isupper() and k != "c":
pass
else:
splitted_smiles.append(k)
return splitted_smiles
def get_maxlen(all_smiles, kekuleSmiles=True):
maxlen = 0
for smi in tqdm(all_smiles):
spt = split_smiles(smi, kekuleSmiles=kekuleSmiles)
if spt is None:
continue
maxlen = max(maxlen, len(spt))
return maxlen
def get_dict(all_smiles, save_path, kekuleSmiles=True):
words = [' ']
for smi in tqdm(all_smiles):
spt = split_smiles(smi, kekuleSmiles=kekuleSmiles)
if spt is None:
continue
for w in spt:
if w in words:
continue
else:
words.append(w)
with open(save_path, 'w') as js:
json.dump(words, js)
return words
def one_hot_coding(smi, words, kekuleSmiles=True, max_len=1000):
coord_j = []
coord_k = []
spt = split_smiles(smi, kekuleSmiles=kekuleSmiles)
if spt is None:
return None
for j,w in enumerate(spt):
if j >= max_len:
break
try:
k = words.index(w)
except:
continue
coord_j.append(j)
coord_k.append(k)
data = np.repeat(1, len(coord_j))
output = sparse.csr_matrix((data, (coord_j, coord_k)), shape=(max_len, len(words)))
return output
def split_dataset(dataset, ratio):
"""Shuffle and split a dataset."""
# np.random.seed(111) # fix the seed for shuffle.
#np.random.shuffle(dataset)
n = int(ratio * len(dataset))
return dataset[:n], dataset[n:]
def plot_confusion_matrix(cm, savename, title='Confusion Matrix'):
plt.figure(figsize=(12, 8), dpi=100)
np.set_printoptions(precision=2)
ind_array = [np.arange(3)]
x, y = np.meshgrid(ind_array, ind_array)
for x_val, y_val in zip(x.flatten(), y.flatten()):
c = cm[y_val][x_val]
if c > 0.001:
plt.text(x_val, y_val, "%0.2f" % (c,), color='red', fontsize=15, va='center', ha='center')
plt.imshow(cm, interpolation='nearest', cmap=plt.cm.binary)
plt.title(title)
plt.colorbar()
xlocations = np.array(range(len(classes)))
plt.xticks(xlocations, classes, rotation=90)
plt.yticks(xlocations, classes)
plt.ylabel('Actual label')
plt.xlabel('Predict label')
# offset the tick
tick_marks = np.array(range(len(classes))) + 0.5
plt.gca().set_xticks(tick_marks, minor=True)
plt.gca().set_yticks(tick_marks, minor=True)
plt.gca().xaxis.set_ticks_position('none')
plt.gca().yaxis.set_ticks_position('none')
plt.grid(True, which='minor', linestyle='-')
plt.gcf().subplots_adjust(bottom=0.15)
# show confusion matrix
plt.savefig(savename, format='png')
plt.show()
def main(sm):
with open("dict.json", "r", encoding="utf-8") as f:
words = json.load(f)
inchis = list([sm])
rts = list([0])
smiles, targets = [], []
for i, inc in enumerate(tqdm(inchis)):
mol = Chem.MolFromSmiles(inc)
if mol is None:
continue
else:
smi = Chem.MolToSmiles(mol)
smiles.append(smi)
targets.append(rts[i])
features = []
for i, smi in enumerate(tqdm(smiles)):
xi = one_hot_coding(smi, words, max_len=600)
if xi is not None:
features.append(xi.todense())
features = np.asarray(features)
targets = np.asarray(targets)
X_test=features
Y_test=targets
n_features=10
model = RandomForestRegressor(n_estimators=100, criterion='friedman_mse', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=1.0, max_leaf_nodes=None, min_impurity_decrease=0.0, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, ccp_alpha=0.0, max_samples=None)
from tensorflow.keras import backend as K
load_model = pickle.load(open(r"predict.dat","rb"))
# model = load_model('C:/Users/sunjinyu/Desktop/FingerID Reference/drug-likeness/CNN/single_model.h5')
Y_predict = load_model.predict(K.cast_to_floatx(X_test).reshape((np.size(X_test,0),np.size(X_test,1)*np.size(X_test,2))))
#Y_predict = model.predict(X_test)
x = list(Y_test)
y = list(Y_predict)
return Y_predict
def edit_dataset(drug,non_drug,task):
# np.random.seed(111) # fix the seed for shuffle.
# np.random.shuffle(non_drug)
non_drug=non_drug[0:len(drug)]
# np.random.shuffle(non_drug)
# np.random.shuffle(drug)
dataset_train_drug, dataset_test_drug = split_dataset(drug, 0.9)
# dataset_train_drug,dataset_dev_drug = split_dataset(dataset_train_drug, 0.9)
dataset_train_no, dataset_test_no = split_dataset(non_drug, 0.9)
# dataset_train_no,dataset_dev_no = split_dataset(dataset_train_no, 0.9)
dataset_train = pd.concat([dataset_train_drug,dataset_train_no], axis=0)
dataset_test=pd.concat([ dataset_test_drug,dataset_test_no], axis=0)
# dataset_dev = dataset_dev_drug+dataset_dev_no
return dataset_train, dataset_test