jinysun commited on
Commit
f7c5f74
·
1 Parent(s): 8c7cadd

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -73
app.py DELETED
@@ -1,73 +0,0 @@
1
- import streamlit as st
2
- import pandas as pd
3
- import rdkit
4
- import streamlit_ketcher
5
- from streamlit_ketcher import st_ketcher
6
- import run
7
- import screen
8
-
9
- # Page setup
10
- st.set_page_config(page_title="DeepDAP", page_icon="🔋", layout="wide")
11
- st.title("🔋DeepDAP")
12
- st.subheader('',divider='rainbow')
13
- # Connect to the Google Sheet
14
-
15
- url1= r"https://docs.google.com/spreadsheets/d/1AKkZS04VF3osFT36aNHIb4iUbV8D1uNfsldcpHXogj0/gviz/tq?tqx=out:csv&sheet=dap"
16
- df1 = pd.read_csv(url1, dtype=str, encoding='utf-8')
17
- col1, col2 = st.columns(2)
18
- with col1:
19
- st.header("🔍**Search papers or molecules**")
20
- text_search = st.text_input(label="_", value="",label_visibility="hidden" )
21
- m1 = df1["Donor_Name"].str.contains(text_search)
22
- m2 = df1["reference"].str.contains(text_search)
23
- m3 = df1["Acceptor_Name"].str.contains(text_search)
24
- df_search = df1[m1 | m2|m3]
25
- with col2:
26
- st.link_button(":black[📝**DATABASE**]", r"https://docs.google.com/spreadsheets/d/1AKkZS04VF3osFT36aNHIb4iUbV8D1uNfsldcpHXogj0")
27
- st.caption(':black[👆If you want to update the origin database, click the button.]')
28
- if text_search:
29
- st.write(df_search)
30
- st.download_button( "⬇️Download edited files as .csv", df_search.to_csv(), "df_search.csv", use_container_width=True)
31
- edited_df = st.data_editor(df1, num_rows="dynamic")
32
-
33
- st.download_button(
34
- "⬇️ Download edited files as .csv", edited_df.to_csv(), "edited_df.csv", use_container_width=True
35
- )
36
- st.subheader("👇 :red[***Select the type of active layer...***]")
37
- option = st.radio(
38
- "👇 :red[**Select the type of active layer...**]",
39
- [":black[**Donor**]", ":black[**Acceptor**]"], label_visibility="hidden"
40
- )
41
- if option ==":black[**Acceptor**]":
42
- st.subheader("👨‍🔬**Input the SMILES of Acceptor Molecule**")
43
- molecule = st.text_input("👨‍🔬**Input the SMILES of Acceptor Molecule**", label_visibility="hidden" )
44
- acceptor= st_ketcher(molecule )
45
- st.subheader(f"🏆**New SMILES of edited acceptor molecules**: {acceptor}")
46
- st.subheader(":black[**🧡Input the SMILES of Donor Molecule**]")
47
- donor= st.text_input(":black[**🧡Input the SMILES of Donor Molecule**]", label_visibility="hidden")
48
- if option ==":black[**Donor**]":
49
- st.subheader("👨‍🔬**Input the SMILES of Donor Molecule**" )
50
- do= st.text_input("👨‍🔬**Input the SMILES of Donor Molecule**" , label_visibility="hidden")
51
- donor = st_ketcher(do)
52
- st.subheader(f"🏆**New SMILES of edited donor molecules**: {donor}")
53
- st.subheader(":black[**🧡Input the SMILES of Acceptor Molecule**]")
54
- acceptor = st.text_input(":black[**🧡Input the SMILES of Acceptor Molecule**]", label_visibility="hidden")
55
- try:
56
-
57
- pce = run.smiles_aas_test( str(acceptor ), str(donor) )
58
- st.subheader(f"⚡**PCE**: ``{pce}``")
59
- except:
60
- st.subheader(f"⚡**PCE**: None ")
61
- st.subheader(":black[**🧡Batch screening for high-performance D/A pairs**]")
62
- uploaded_files = st.file_uploader("Choose a CSV file")
63
- st.write( "🎈upload a csv file containing ['donor' ] and ['acceptor']")
64
- if st.button("📑PREDICT"):
65
- if uploaded_files is not None:
66
- text = st.markdown(":red[Predictions are being made... Please wait...]")
67
- st.progress(100, text=None)
68
- x = screen.smiles_aas_test(uploaded_files )
69
- x = pd.DataFrame(x)
70
-
71
- st.download_button( "⬇️Download the predicted files as .csv", x.to_csv(), "predict results.csv", use_container_width=True)
72
- else:
73
- st.markdown(":red[Please upload the file first!]")