jinysun commited on
Commit
9a7e3dc
1 Parent(s): 5a36d94

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -102
app.py DELETED
@@ -1,102 +0,0 @@
1
- import streamlit as st
2
- import pandas as pd
3
- import rdkit
4
- import streamlit_ketcher
5
- from streamlit_ketcher import st_ketcher
6
- import run
7
- import screen
8
-
9
- # Page setup
10
- st.set_page_config(page_title="DeepDAP", page_icon="🔋", layout="wide")
11
- st.title("🔋DeepDAP")
12
- st.subheader('',divider='rainbow')
13
- # Connect to the Google Sheet
14
-
15
- url1= r"https://docs.google.com/spreadsheets/d/1AKkZS04VF3osFT36aNHIb4iUbV8D1uNfsldcpHXogj0/gviz/tq?tqx=out:csv&sheet=dap"
16
- df1 = pd.read_csv(url1, dtype=str, encoding='utf-8')
17
- col1, col2 = st.columns(2)
18
- st.subheader("🔍**Search papers or molecules**")
19
- with col1:
20
-
21
- text_search = st.text_input(label="_", value="",label_visibility="hidden" )
22
- m1 = df1["Donor_Name"].str.contains(text_search)
23
- m2 = df1["reference"].str.contains(text_search)
24
- m3 = df1["Acceptor_Name"].str.contains(text_search)
25
- df_search = df1[m1 | m2|m3]
26
- with col2:
27
- st.subheader(" ")
28
- st.link_button(":black[📝**DATABASE**]", r"https://docs.google.com/spreadsheets/d/1AKkZS04VF3osFT36aNHIb4iUbV8D1uNfsldcpHXogj0")
29
- st.caption(':black[👆If you want to update the origin database, click the button.]')
30
- if text_search:
31
- st.write(df_search)
32
- st.download_button( "⬇️Download edited files as .csv", df_search.to_csv(), "df_search.csv", use_container_width=True)
33
- edited_df = st.data_editor(df1, num_rows="dynamic")
34
-
35
- st.download_button(
36
- "⬇️ Download edited files as .csv", edited_df.to_csv(), "edited_df.csv", use_container_width=True
37
- )
38
- #st.subheader("👇 :red[***Select the type of active layer...***]")
39
- col3, col4 = st.columns(2)
40
- with col3:
41
-
42
- option = st.selectbox( ' 👇Select the type of active layer materials to be edited...',
43
- ("🎈Donor", "🎈Acceptor"), placeholder="👇Select the type of active layer materials...", )
44
- with col4:
45
- st.subheader(" ")
46
- st.markdown('👇An example of PM6 : Y6.')
47
- if st.button("🙋‍♂️**Example**"):
48
- option ="example"
49
- molecule = 'O=C(C(C=C(F)C(F)=C1)=C1C/2=C(C#N)/C#N)C2=C/C3=C(CCCCCCCCCCC)C(S4)=C(S3)C5=C4C6=C(N5CC(CC)CCCC)C7=C(C(SC8=C9SC(/C=C%10C(C(C=C(F)C(F)=C%11)=C%11C\%10=C(C#N)C#N)=O)=C8CCCCCCCCCCC)=C9N7CC(CC)CCCC)C%12=NSN=C6%12'
50
- do = 'CCCCC(CC)CC1=C(F)C=C(C2=C3C=C(C4=CC=C(C5=C6C(=O)C7=C(CC(CC)CCCC)SC(CC(CC)CCCC)=C7C(=O)C6=C(C6=CC=C(C)S6)S5)S4)SC3=C(C3=CC(F)=C(CC(CC)CCCC)S3)C3=C2SC(C)=C3)S1'
51
-
52
- if option =="🎈Acceptor":
53
- st.subheader("👨‍🔬**Input the SMILES of Acceptor Molecule**")
54
- molecule = st.text_input("👨‍🔬**Input the SMILES of Acceptor Molecule**", label_visibility="hidden" )
55
- acceptor= st_ketcher(molecule )
56
- st.subheader(f"🏆**New SMILES of edited acceptor molecules**: {acceptor}")
57
- st.subheader(":black[**🧡Input the SMILES of Donor Molecule**]")
58
- donor= st.text_input(":black[**🧡Input the SMILES of Donor Molecule**]", label_visibility="hidden")
59
- if option =="🎈Donor":
60
- st.subheader("👨‍🔬**Input the SMILES of Donor Molecule**" )
61
- do= st.text_input("👨‍🔬**Input the SMILES of Donor Molecule**" , label_visibility="hidden")
62
- donor = st_ketcher(do)
63
- st.subheader(f"🏆**New SMILES of edited donor molecules**: {donor}")
64
- st.subheader(":black[**🧡Input the SMILES of Acceptor Molecule**]")
65
- acceptor = st.text_input(":black[**🧡Input the SMILES of Acceptor Molecule**]", label_visibility="hidden")
66
- if option =="example":
67
-
68
- st.subheader("👨‍🔬**Input the SMILES of Y6**")
69
- st.markdown(molecule)
70
- acceptor= st_ketcher(molecule )
71
- st.subheader(f"🏆**New SMILES of edited acceptor molecules**: {acceptor}")
72
- st.subheader(":black[**🧡Input the SMILES of PM6**]")
73
- st.markdown(do)
74
- donor= do
75
- try:
76
-
77
- pce = run.smiles_aas_test( str(acceptor ), str(donor) )
78
- st.subheader(f"⚡**PCE**: ``{pce}``")
79
- except:
80
- st.subheader(f"⚡**PCE**: None ")
81
- st.subheader(":black[**🧡 High-throughput screening for high-performance D/A pairs**]")
82
- col5, col6 = st.columns(2)
83
- with col5:
84
- uploaded_files = st.file_uploader("Choose a CSV file")
85
- st.write( "🎈upload a csv file containing ['donor' ] and ['acceptor']")
86
- with col6:
87
- url2= r"https://docs.google.com/spreadsheets/d/1jPfHM21IjksNn_80fdakS1ofDNIagwMXBWAjoZBr-YY/gviz/tq?tqx=out:csv"
88
- df2 = pd.read_csv(url2)
89
- st.markdown('👇The example of input files for high-throughput screening.')
90
- st.download_button(
91
- "⬇️ Download example files", df2.to_csv(), "example.csv" )
92
-
93
- if st.button("📑PREDICT"):
94
- if uploaded_files is not None:
95
- text = st.markdown(":red[Predictions are being made... Please wait...]")
96
- st.progress(100, text=None)
97
- x = screen.smiles_aas_test(uploaded_files )
98
- fx = pd.DataFrame(list(x))
99
- st.markdown(":red[Prediction finished! ]")
100
- st.download_button( "⬇️Download the predicted files as .csv", fx.to_csv(), "predict results.csv", use_container_width=True)
101
- else:
102
- st.markdown(":red[Please upload the file first!]")