Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	| from share import * | |
| import config | |
| import cv2 | |
| import einops | |
| import gradio as gr | |
| import numpy as np | |
| import torch | |
| import random | |
| from pytorch_lightning import seed_everything | |
| from annotator.util import resize_image, HWC3 | |
| from annotator.midas import apply_midas | |
| from cldm.model import create_model, load_state_dict | |
| from ldm.models.diffusion.ddim import DDIMSampler | |
| model = create_model('./models/cldm_v15.yaml').cpu() | |
| model.load_state_dict(load_state_dict('./models/control_sd15_normal.pth', location='cuda')) | |
| model = model.cuda() | |
| ddim_sampler = DDIMSampler(model) | |
| def process(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, scale, seed, eta, bg_threshold): | |
| with torch.no_grad(): | |
| input_image = HWC3(input_image) | |
| _, detected_map = apply_midas(resize_image(input_image, detect_resolution), bg_th=bg_threshold) | |
| detected_map = HWC3(detected_map) | |
| img = resize_image(input_image, image_resolution) | |
| H, W, C = img.shape | |
| detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) | |
| control = torch.from_numpy(detected_map[:, :, ::-1].copy()).float().cuda() / 255.0 | |
| control = torch.stack([control for _ in range(num_samples)], dim=0) | |
| control = einops.rearrange(control, 'b h w c -> b c h w').clone() | |
| if seed == -1: | |
| seed = random.randint(0, 65535) | |
| seed_everything(seed) | |
| if config.save_memory: | |
| model.low_vram_shift(is_diffusing=False) | |
| cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]} | |
| un_cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]} | |
| shape = (4, H // 8, W // 8) | |
| if config.save_memory: | |
| model.low_vram_shift(is_diffusing=True) | |
| samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples, | |
| shape, cond, verbose=False, eta=eta, | |
| unconditional_guidance_scale=scale, | |
| unconditional_conditioning=un_cond) | |
| if config.save_memory: | |
| model.low_vram_shift(is_diffusing=False) | |
| x_samples = model.decode_first_stage(samples) | |
| x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) | |
| results = [x_samples[i] for i in range(num_samples)] | |
| return [detected_map] + results | |
| block = gr.Blocks().queue() | |
| with block: | |
| with gr.Row(): | |
| gr.Markdown("## Control Stable Diffusion with Normal Maps") | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image = gr.Image(source='upload', type="numpy") | |
| prompt = gr.Textbox(label="Prompt") | |
| run_button = gr.Button(label="Run") | |
| with gr.Accordion("Advanced options", open=False): | |
| num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1) | |
| image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=256) | |
| detect_resolution = gr.Slider(label="Normal Resolution", minimum=128, maximum=1024, value=384, step=1) | |
| bg_threshold = gr.Slider(label="Normal background threshold", minimum=0.0, maximum=1.0, value=0.4, step=0.01) | |
| ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1) | |
| scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1) | |
| seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True) | |
| eta = gr.Number(label="eta (DDIM)", value=0.0) | |
| a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed') | |
| n_prompt = gr.Textbox(label="Negative Prompt", | |
| value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality') | |
| with gr.Column(): | |
| result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto') | |
| ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, scale, seed, eta, bg_threshold] | |
| run_button.click(fn=process, inputs=ips, outputs=[result_gallery]) | |
| block.launch(server_name='0.0.0.0') | |
