Spaces:
Build error
Build error
jijivski
commited on
Commit
•
3fe3e10
1
Parent(s):
0bf42ca
okay on local phi-2
Browse files- __init__.py +0 -0
- app.py +49 -30
- get_loss/__pycache__/get_loss_hf.cpython-310.pyc +0 -0
- get_loss/get_loss.py +1 -1
- get_loss/get_loss_hf.py +26 -8
- gradio_cached_examples/186/log.csv +3 -0
- gradio_cached_examples/212/log.csv +3 -0
__init__.py
ADDED
File without changes
|
app.py
CHANGED
@@ -1,25 +1,28 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
from transformers import AutoTokenizer
|
4 |
-
from
|
5 |
-
|
|
|
6 |
# os.system('git clone https://github.com/EleutherAI/lm-evaluation-harness')
|
7 |
# os.system('cd lm-evaluation-harness')
|
8 |
# os.system('pip install -e .')
|
|
|
9 |
# 第一个功能:基于输入文本和对应的损失值对文本进行着色展示
|
10 |
|
11 |
-
def color_text(text_list=["hi", "FreshEval"], loss_list=[0.1,0.7]):
|
12 |
"""
|
13 |
根据损失值为文本着色。
|
14 |
"""
|
15 |
highlighted_text = []
|
|
|
16 |
for text, loss in zip(text_list, loss_list):
|
17 |
# color = "#FF0000" if float(loss) > 0.5 else "#00FF00"
|
18 |
-
color=loss
|
19 |
# highlighted_text.append({"text": text, "bg_color": color})
|
20 |
highlighted_text.append((text, color))
|
21 |
|
22 |
-
print(highlighted_text)
|
23 |
return highlighted_text
|
24 |
|
25 |
# 第二个功能:根据 ID 列表和 tokenizer 将 ID 转换为文本,并展示
|
@@ -27,32 +30,43 @@ def get_text(ids_list=[0.1,0.7], tokenizer=None):
|
|
27 |
"""
|
28 |
给定一个 ID 列表和 tokenizer 名称,将这些 ID 转换成文本。
|
29 |
"""
|
30 |
-
return ['Hi', 'Adam']
|
31 |
-
# tokenizer = AutoTokenizer.from_pretrained(
|
32 |
-
|
|
|
|
|
|
|
|
|
33 |
# 这里只是简单地返回文本,但是可以根据实际需求添加颜色或其他样式
|
34 |
-
|
|
|
35 |
|
36 |
|
37 |
-
def get_ids_loss(text, tokenizer, model):
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
|
46 |
|
47 |
-
def color_pipeline(
|
48 |
"""
|
49 |
给定一个文本,返回其对应的着色文本。
|
50 |
"""
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
52 |
# {'logit':logit,'input_ids':input_chunk,'tokenizer':tokenizer,'neg_log_prob_temp':neg_log_prob_temp}
|
53 |
-
|
54 |
-
|
55 |
text = get_text(ids, tokenizer)
|
|
|
56 |
return color_text(text, loss)
|
57 |
|
58 |
|
@@ -67,20 +81,25 @@ with gr.Blocks() as demo:
|
|
67 |
|
68 |
# loss_input = gr.Number(label="loss")
|
69 |
model_input = gr.Textbox(label="model name", placeholder="input your model name here... now I am trying phi-2...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
# TODO select models that can be used online
|
71 |
# TODO maybe add our own models
|
72 |
|
73 |
|
74 |
color_text_output = gr.HTML(label="colored text")
|
75 |
-
|
76 |
-
|
77 |
-
# [["hi", "Adam"], [0.1,0.7]],
|
78 |
-
# [text_input, loss_input],
|
79 |
-
# cache_examples=True,
|
80 |
-
# fn=color_text,
|
81 |
-
# outputs=color_text_output
|
82 |
-
# )
|
83 |
-
color_text_button = gr.Button("color the text").click(color_pipeline, inputs=[text_input, model_input], outputs=gr.HighlightedText(label="colored text"))
|
84 |
|
85 |
|
86 |
date_time_input = gr.Textbox(label="the date when the text is generated")#TODO add date time input
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
from transformers import AutoTokenizer
|
4 |
+
from get_loss.get_loss_hf import run_get_loss
|
5 |
+
import pdb
|
6 |
+
from types import SimpleNamespace
|
7 |
# os.system('git clone https://github.com/EleutherAI/lm-evaluation-harness')
|
8 |
# os.system('cd lm-evaluation-harness')
|
9 |
# os.system('pip install -e .')
|
10 |
+
# -i https://pypi.tuna.tsinghua.edu.cn/simple
|
11 |
# 第一个功能:基于输入文本和对应的损失值对文本进行着色展示
|
12 |
|
13 |
+
def color_text(text_list=["hi", "FreshEval","!"], loss_list=[0.1,0.7]):
|
14 |
"""
|
15 |
根据损失值为文本着色。
|
16 |
"""
|
17 |
highlighted_text = []
|
18 |
+
loss_list=[0]+loss_list
|
19 |
for text, loss in zip(text_list, loss_list):
|
20 |
# color = "#FF0000" if float(loss) > 0.5 else "#00FF00"
|
21 |
+
color=loss/25
|
22 |
# highlighted_text.append({"text": text, "bg_color": color})
|
23 |
highlighted_text.append((text, color))
|
24 |
|
25 |
+
print('highlighted_text',highlighted_text)
|
26 |
return highlighted_text
|
27 |
|
28 |
# 第二个功能:根据 ID 列表和 tokenizer 将 ID 转换为文本,并展示
|
|
|
30 |
"""
|
31 |
给定一个 ID 列表和 tokenizer 名称,将这些 ID 转换成文本。
|
32 |
"""
|
33 |
+
# return ['Hi', 'Adam']
|
34 |
+
# tokenizer = AutoTokenizer.from_pretrained(tokenizer)
|
35 |
+
print('ids_list',ids_list)
|
36 |
+
# pdb.set_trace()
|
37 |
+
text=[]
|
38 |
+
for id in ids_list:
|
39 |
+
text.append( tokenizer.decode(id, skip_special_tokens=True))
|
40 |
# 这里只是简单地返回文本,但是可以根据实际需求添加颜色或其他样式
|
41 |
+
print(f'L41:{text}')
|
42 |
+
return text
|
43 |
|
44 |
|
45 |
+
# def get_ids_loss(text, tokenizer, model):
|
46 |
+
# """
|
47 |
+
# 给定一个文本,model and its tokenizer,返回其对应的 IDs 和损失值。
|
48 |
+
# """
|
49 |
+
# # tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
|
50 |
+
# # model = AutoModelForCausalLM.from_pretrained(model_name)
|
51 |
+
# # 这里只是简单地返回 IDs 和损失值,但是可以根据实际需求添加颜色或其他样式
|
52 |
+
# return [1, 2], [0.1, 0.7]
|
53 |
|
54 |
|
55 |
+
def color_pipeline(texts=["Hi","FreshEval","!"], model=None):
|
56 |
"""
|
57 |
给定一个文本,返回其对应的着色文本。
|
58 |
"""
|
59 |
+
print('text,model',texts,model)
|
60 |
+
args=SimpleNamespace(texts=texts,model=model)
|
61 |
+
print(f'L60,text:{texts}')
|
62 |
+
rtn_dic=run_get_loss(args)
|
63 |
+
# print(rtn_dic)
|
64 |
+
# pdb.set_trace()
|
65 |
# {'logit':logit,'input_ids':input_chunk,'tokenizer':tokenizer,'neg_log_prob_temp':neg_log_prob_temp}
|
66 |
+
ids, loss =rtn_dic['input_ids'],rtn_dic['loss']#= get_ids_loss(text, tokenizer, model)
|
67 |
+
tokenizer=rtn_dic['tokenizer'] # get tokenizer
|
68 |
text = get_text(ids, tokenizer)
|
69 |
+
# print('ids, loss ,text',ids, loss ,text)
|
70 |
return color_text(text, loss)
|
71 |
|
72 |
|
|
|
81 |
|
82 |
# loss_input = gr.Number(label="loss")
|
83 |
model_input = gr.Textbox(label="model name", placeholder="input your model name here... now I am trying phi-2...")
|
84 |
+
output_box=gr.HighlightedText(label="colored text")
|
85 |
+
# gr.Examples(
|
86 |
+
# [
|
87 |
+
# # ["Hi FreshEval !", "microsoft/phi-2"],
|
88 |
+
# ["Hello FreshBench !", "/home/sribd/chenghao/models/phi-2"],
|
89 |
+
# ],
|
90 |
+
# [text_input, model_input],
|
91 |
+
# cache_examples=True,
|
92 |
+
# # cache_examples=False,
|
93 |
+
# fn=color_pipeline,
|
94 |
+
# outputs=output_box
|
95 |
+
# )
|
96 |
# TODO select models that can be used online
|
97 |
# TODO maybe add our own models
|
98 |
|
99 |
|
100 |
color_text_output = gr.HTML(label="colored text")
|
101 |
+
|
102 |
+
color_text_button = gr.Button("color the text").click(color_pipeline, inputs=[text_input, model_input], outputs=output_box)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
|
105 |
date_time_input = gr.Textbox(label="the date when the text is generated")#TODO add date time input
|
get_loss/__pycache__/get_loss_hf.cpython-310.pyc
ADDED
Binary file (3.76 kB). View file
|
|
get_loss/get_loss.py
CHANGED
@@ -257,7 +257,7 @@ def run_get_loss(args):
|
|
257 |
from types import SimpleNamespace
|
258 |
|
259 |
if __name__ == '__main__':
|
260 |
-
args=SimpleNamespace(model='
|
261 |
|
262 |
|
263 |
|
|
|
257 |
from types import SimpleNamespace
|
258 |
|
259 |
if __name__ == '__main__':
|
260 |
+
args=SimpleNamespace(model='microsoft/phi-2',texts=['Hello FreshBench !'],model_type='hf',data='data.json',model_cache=None,chunk_size=1024)
|
261 |
|
262 |
|
263 |
|
get_loss/get_loss_hf.py
CHANGED
@@ -10,13 +10,15 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
10 |
from datetime import datetime
|
11 |
import argparse
|
12 |
from types import SimpleNamespace
|
13 |
-
|
14 |
# import mamba_ssm
|
15 |
# import rwkv
|
16 |
|
17 |
|
18 |
# RWKV4_TOKENIZER_FILE = "./support/20B_tokenizer.json"
|
19 |
-
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
|
|
20 |
|
21 |
def load_list_from_json(file_path):
|
22 |
"""
|
@@ -36,6 +38,7 @@ def calculate_loss(logits, target_token_ids):
|
|
36 |
# log_probs = F.log_softmax(shifted_logits, dim=-1)
|
37 |
loss = torch.nn.functional.cross_entropy(logits[:-1, :].view(-1, logits.shape[-1]),
|
38 |
target_token_ids[1:].view(-1), reduction='none')
|
|
|
39 |
|
40 |
|
41 |
# target_log_probs = -log_probs.gather(1, shifted_targets.unsqueeze(1)).squeeze()
|
@@ -44,7 +47,7 @@ def calculate_loss(logits, target_token_ids):
|
|
44 |
# log_sum = torch.sum(target_log_probs, dim=-1)
|
45 |
# print(perplexity_sum)
|
46 |
|
47 |
-
return loss.
|
48 |
|
49 |
|
50 |
def calculate_log_sum(logits, target_token_ids):
|
@@ -122,6 +125,7 @@ def print_model_parameters_in_billions(model):
|
|
122 |
def load_hf_model(path, cache_path):
|
123 |
hf_tokenizer = AutoTokenizer.from_pretrained(path)
|
124 |
if cache_path is not None:
|
|
|
125 |
hf_model = AutoModelForCausalLM.from_pretrained(path,
|
126 |
device_map=device,
|
127 |
trust_remote_code=True,
|
@@ -212,7 +216,6 @@ def eval_hf_model(model, tokenizer, texts, chunk_size):
|
|
212 |
neg_log_prob_temp += log_sum
|
213 |
|
214 |
loss = calculate_loss(logit, input_chunk.squeeze(0))
|
215 |
-
neg_log_prob_temp += log_sum
|
216 |
|
217 |
# token_length_list.append(seq_length)
|
218 |
# data.append(neg_log_prob_temp)
|
@@ -224,8 +227,8 @@ def eval_hf_model(model, tokenizer, texts, chunk_size):
|
|
224 |
|
225 |
# print(f'log probability sum: {sum(data) / len(data):.2f}')
|
226 |
# print(f'avg tokens: {sum(token_length_list) / len(token_length_list):.0f}')
|
227 |
-
|
228 |
-
|
229 |
|
230 |
|
231 |
# if __name__ == '__main__':
|
@@ -239,14 +242,28 @@ def eval_hf_model(model, tokenizer, texts, chunk_size):
|
|
239 |
# parser.add_argument('--chunk_size', type=int, default=1024, help='chunk size')
|
240 |
|
241 |
|
242 |
-
def run_get_loss(args):
|
243 |
if args is None:
|
244 |
-
args=SimpleNamespace(model='microsoft/phi-2',texts='Hello FreshBench !',model_type='hf',model_cache=None,chunk_size=1024)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
245 |
|
246 |
# args = parser.parse_args()
|
247 |
|
248 |
# load data
|
249 |
# texts = load_list_from_json(args.data)
|
|
|
250 |
texts=args.texts
|
251 |
print(f'data size: {len(texts)}')
|
252 |
|
@@ -264,6 +281,7 @@ def run_get_loss(args):
|
|
264 |
|
265 |
# eval
|
266 |
if args.model_type in ['hf', 'mamba']:
|
|
|
267 |
return eval_hf_model(model=model, tokenizer=tokenizer, texts=texts, chunk_size=args.chunk_size)
|
268 |
# elif args.model_type == 'rwkv':
|
269 |
# return eval_rwkv(model=model, tokenizer=tokenizer, texts=texts, chunk_size=args.chunk_size)
|
|
|
10 |
from datetime import datetime
|
11 |
import argparse
|
12 |
from types import SimpleNamespace
|
13 |
+
import pdb
|
14 |
# import mamba_ssm
|
15 |
# import rwkv
|
16 |
|
17 |
|
18 |
# RWKV4_TOKENIZER_FILE = "./support/20B_tokenizer.json"
|
19 |
+
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
20 |
+
device = 'cpu'
|
21 |
+
|
22 |
|
23 |
def load_list_from_json(file_path):
|
24 |
"""
|
|
|
38 |
# log_probs = F.log_softmax(shifted_logits, dim=-1)
|
39 |
loss = torch.nn.functional.cross_entropy(logits[:-1, :].view(-1, logits.shape[-1]),
|
40 |
target_token_ids[1:].view(-1), reduction='none')
|
41 |
+
# pdb.set_trace()
|
42 |
|
43 |
|
44 |
# target_log_probs = -log_probs.gather(1, shifted_targets.unsqueeze(1)).squeeze()
|
|
|
47 |
# log_sum = torch.sum(target_log_probs, dim=-1)
|
48 |
# print(perplexity_sum)
|
49 |
|
50 |
+
return loss.cpu().numpy()
|
51 |
|
52 |
|
53 |
def calculate_log_sum(logits, target_token_ids):
|
|
|
125 |
def load_hf_model(path, cache_path):
|
126 |
hf_tokenizer = AutoTokenizer.from_pretrained(path)
|
127 |
if cache_path is not None:
|
128 |
+
# pdb.set_trace()
|
129 |
hf_model = AutoModelForCausalLM.from_pretrained(path,
|
130 |
device_map=device,
|
131 |
trust_remote_code=True,
|
|
|
216 |
neg_log_prob_temp += log_sum
|
217 |
|
218 |
loss = calculate_loss(logit, input_chunk.squeeze(0))
|
|
|
219 |
|
220 |
# token_length_list.append(seq_length)
|
221 |
# data.append(neg_log_prob_temp)
|
|
|
227 |
|
228 |
# print(f'log probability sum: {sum(data) / len(data):.2f}')
|
229 |
# print(f'avg tokens: {sum(token_length_list) / len(token_length_list):.0f}')
|
230 |
+
rtn_dic={'logit':logit.cpu().numpy(),'input_ids':input_chunk.cpu().numpy()[0],'loss':loss,'tokenizer':tokenizer,'neg_log_prob_temp':neg_log_prob_temp}
|
231 |
+
return rtn_dic
|
232 |
|
233 |
|
234 |
# if __name__ == '__main__':
|
|
|
242 |
# parser.add_argument('--chunk_size', type=int, default=1024, help='chunk size')
|
243 |
|
244 |
|
245 |
+
def run_get_loss(args=None):
|
246 |
if args is None:
|
247 |
+
# args=SimpleNamespace(model='microsoft/phi-2',texts='Hello FreshBench !',model_type='hf',model_cache=None,chunk_size=1024)
|
248 |
+
args=SimpleNamespace(model='/home/sribd/chenghao/models/phi-2',texts='Hello FreshBench !',model_type='hf',model_cache=None,chunk_size=1024)
|
249 |
+
|
250 |
+
|
251 |
+
if 'chunk_size' not in args.__dict__:
|
252 |
+
args.chunk_size=1024
|
253 |
+
if 'model_type' not in args.__dict__:
|
254 |
+
args.model_type='hf'
|
255 |
+
if 'model' not in args.__dict__ or len(args.model)<2:
|
256 |
+
# args.model='/home/sribd/chenghao/models/phi-2'
|
257 |
+
args.model='microsoft/phi-2'
|
258 |
+
|
259 |
+
if 'model_cache' not in args.__dict__:
|
260 |
+
args.model_cache=args.model
|
261 |
|
262 |
# args = parser.parse_args()
|
263 |
|
264 |
# load data
|
265 |
# texts = load_list_from_json(args.data)
|
266 |
+
print('args',args)
|
267 |
texts=args.texts
|
268 |
print(f'data size: {len(texts)}')
|
269 |
|
|
|
281 |
|
282 |
# eval
|
283 |
if args.model_type in ['hf', 'mamba']:
|
284 |
+
print(f'eval hf')
|
285 |
return eval_hf_model(model=model, tokenizer=tokenizer, texts=texts, chunk_size=args.chunk_size)
|
286 |
# elif args.model_type == 'rwkv':
|
287 |
# return eval_rwkv(model=model, tokenizer=tokenizer, texts=texts, chunk_size=args.chunk_size)
|
gradio_cached_examples/186/log.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
colored text,flag,username,timestamp
|
2 |
+
"[{""token"":""Hi"",""class_or_confidence"":13.59826946258545},{""token"":""Adam"",""class_or_confidence"":14.804081916809082}]",,,2024-03-14 14:05:40.149274
|
3 |
+
"[{""token"":""Hi"",""class_or_confidence"":13.59826946258545},{""token"":""Adam"",""class_or_confidence"":14.804081916809082}]",,,2024-03-14 14:05:42.364248
|
gradio_cached_examples/212/log.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
colored text,flag,username,timestamp
|
2 |
+
"[{""token"":""Hi"",""class_or_confidence"":13.59826946258545},{""token"":""Adam"",""class_or_confidence"":14.804081916809082}]",,,2024-03-14 14:05:44.632048
|
3 |
+
"[{""token"":""Hi"",""class_or_confidence"":13.59826946258545},{""token"":""Adam"",""class_or_confidence"":14.804081916809082}]",,,2024-03-14 14:05:46.813954
|