jijivski commited on
Commit
1a08864
·
2 Parent(s): d3710b9 6076324
Files changed (2) hide show
  1. app.py +47 -0
  2. gradio_samples/bertviz/app.py +24 -24
app.py CHANGED
@@ -10,12 +10,41 @@ import matplotlib.pyplot as plt
10
  import numpy as np
11
  from datetime import datetime
12
  import scipy
 
 
 
 
13
  # os.system('git clone https://github.com/EleutherAI/lm-evaluation-harness')
14
  # os.system('cd lm-evaluation-harness')
15
  # os.system('pip install -e .')
16
  # -i https://pypi.tuna.tsinghua.edu.cn/simple
17
  # 第一个功能:基于输入文本和对应的损失值对文本进行着色展示
18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  def color_text(text_list=["hi", "FreshEval","!"], loss_list=[0.1,0.7]):
20
  """
21
  根据损失值为文本着色。
@@ -454,6 +483,24 @@ with gr.Blocks() as demo:
454
  see the questions
455
  '''
456
 
 
457
 
458
  demo.launch(debug=True)
459
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  import numpy as np
11
  from datetime import datetime
12
  import scipy
13
+ <<<<<<< HEAD
14
+ =======
15
+ import shutil
16
+ >>>>>>> 95f252d5216b18bcd503dc7425ceb1dd1ccb8f6b
17
  # os.system('git clone https://github.com/EleutherAI/lm-evaluation-harness')
18
  # os.system('cd lm-evaluation-harness')
19
  # os.system('pip install -e .')
20
  # -i https://pypi.tuna.tsinghua.edu.cn/simple
21
  # 第一个功能:基于输入文本和对应的损失值对文本进行着色展示
22
 
23
+
24
+ csv_file_path = 'data.csv'
25
+
26
+ def save_and_share_csv():
27
+ src_path = './data/0309_merge_gjo.csv'
28
+ dest_dir = './save/'
29
+ if not os.path.exists(dest_dir):
30
+ os.makedirs(dest_dir)
31
+ dest_path = os.path.join(dest_dir, '0309_merge_gjo_shared.csv')
32
+ shutil.copy(src_path, dest_path)
33
+ return """
34
+ <script>
35
+ alert('Data shared successfully! CSV saved to ./save/ directory.');
36
+ </script>
37
+ """
38
+ #弹窗没有但反正能保存
39
+
40
+
41
+ def plot_ppl():
42
+ df = pd.read_csv(csv_file_path)
43
+ # 假设df已经有适当的列用于绘图
44
+ fig = px.line(df, x='date', y='loss_mean_at_1000', color='model', title='PPL with Time')
45
+ return fig
46
+
47
+
48
  def color_text(text_list=["hi", "FreshEval","!"], loss_list=[0.1,0.7]):
49
  """
50
  根据损失值为文本着色。
 
483
  see the questions
484
  '''
485
 
486
+ <<<<<<< HEAD
487
 
488
  demo.launch(debug=True)
489
 
490
+ =======
491
+ with gr.Row():
492
+ plot_btn = gr.Button("Generate Plot")
493
+ share_btn = gr.Button("Share Data")
494
+ with gr.Row():
495
+ plot_space = gr.Plot()
496
+ share_result = gr.Textbox(visible=False)
497
+
498
+ # 当点击“Generate Plot”按钮时,调用plotly_plot_question函数并在plot_space显示结果
499
+ plot_btn.click(fn=plotly_plot_question, inputs=[], outputs=plot_space)
500
+
501
+ # 当点击“Share Data”按钮时,调用save_and_share_csv函数并在share_result显示结果
502
+ share_btn.click(fn=save_and_share_csv, inputs=[], outputs=share_result)
503
+
504
+
505
+ demo.launch(share=True,debug=True)
506
+ >>>>>>> 95f252d5216b18bcd503dc7425ceb1dd1ccb8f6b
gradio_samples/bertviz/app.py CHANGED
@@ -15,7 +15,7 @@ from tqdm.notebook import tqdm
15
  from torch.utils.data import DataLoader
16
  from functools import partial
17
 
18
- from transformers import AutoTokenizer, MarianTokenizer, AutoModel, AutoModelForSeq2SeqLM, MarianMTModel
19
 
20
  from bertviz import model_view, head_view
21
  from bertviz_gradio import head_view_mod
@@ -23,44 +23,44 @@ from bertviz_gradio import head_view_mod
23
 
24
 
25
  model_es = "Helsinki-NLP/opus-mt-en-es"
26
- # model_fr = "Helsinki-NLP/opus-mt-en-fr"
27
- # model_zh = "Helsinki-NLP/opus-mt-en-zh"
28
- # model_sw = "Helsinki-NLP/opus-mt-en-sw"
29
 
30
  tokenizer_es = AutoTokenizer.from_pretrained(model_es)
31
- # tokenizer_fr = AutoTokenizer.from_pretrained(model_fr)
32
- # tokenizer_zh = AutoTokenizer.from_pretrained(model_zh)
33
- # tokenizer_sw = AutoTokenizer.from_pretrained(model_sw)
34
 
35
- model_tr_es = MarianMTModel.from_pretrained(model_es)
36
- # model_tr_fr = MarianMTModel.from_pretrained(model_fr)
37
- # model_tr_zh = MarianMTModel.from_pretrained(model_zh)
38
- # model_tr_sw = MarianMTModel.from_pretrained(model_sw)
39
 
40
  model_es = inseq.load_model("Helsinki-NLP/opus-mt-en-es", "input_x_gradient")
41
- # model_fr = inseq.load_model("Helsinki-NLP/opus-mt-en-fr", "input_x_gradient")
42
- # model_zh = inseq.load_model("Helsinki-NLP/opus-mt-en-zh", "input_x_gradient")
43
- # model_sw = inseq.load_model("Helsinki-NLP/opus-mt-en-sw", "input_x_gradient")
44
 
45
  dict_models = {
46
  'en-es': model_es,
47
- # 'en-fr': model_fr,
48
- # 'en-zh': model_zh,
49
- # 'en-sw': model_sw,
50
  }
51
 
52
  dict_models_tr = {
53
  'en-es': model_tr_es,
54
- # 'en-fr': model_tr_fr,
55
- # 'en-zh': model_tr_zh,
56
- # 'en-sw': model_tr_sw,
57
  }
58
 
59
  dict_tokenizer_tr = {
60
  'en-es': tokenizer_es,
61
- # 'en-fr': tokenizer_fr,
62
- # 'en-zh': tokenizer_zh,
63
- # 'en-sw': tokenizer_sw,
64
  }
65
 
66
  saliency_examples = [
@@ -196,4 +196,4 @@ with gr.Blocks(js="plotsjs_bertviz.js") as demo:
196
  # demo.load(None,None,None,js="plotsjs.js")
197
 
198
  if __name__ == "__main__":
199
- demo.launch()
 
15
  from torch.utils.data import DataLoader
16
  from functools import partial
17
 
18
+ from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForSeq2SeqLM
19
 
20
  from bertviz import model_view, head_view
21
  from bertviz_gradio import head_view_mod
 
23
 
24
 
25
  model_es = "Helsinki-NLP/opus-mt-en-es"
26
+ model_fr = "Helsinki-NLP/opus-mt-en-fr"
27
+ model_zh = "Helsinki-NLP/opus-mt-en-zh"
28
+ model_sw = "Helsinki-NLP/opus-mt-en-sw"
29
 
30
  tokenizer_es = AutoTokenizer.from_pretrained(model_es)
31
+ tokenizer_fr = AutoTokenizer.from_pretrained(model_fr)
32
+ tokenizer_zh = AutoTokenizer.from_pretrained(model_zh)
33
+ tokenizer_sw = AutoTokenizer.from_pretrained(model_sw)
34
 
35
+ model_tr_es =AutoModelForSeq2SeqLM.from_pretrained(model_es)
36
+ model_tr_fr = AutoModelForSeq2SeqLM.from_pretrained(model_fr)
37
+ model_tr_zh =AutoModelForSeq2SeqLM.from_pretrained(model_zh)
38
+ model_tr_sw = AutoModelForSeq2SeqLM.from_pretrained(model_sw)
39
 
40
  model_es = inseq.load_model("Helsinki-NLP/opus-mt-en-es", "input_x_gradient")
41
+ model_fr = inseq.load_model("Helsinki-NLP/opus-mt-en-fr", "input_x_gradient")
42
+ model_zh = inseq.load_model("Helsinki-NLP/opus-mt-en-zh", "input_x_gradient")
43
+ model_sw = inseq.load_model("Helsinki-NLP/opus-mt-en-sw", "input_x_gradient")
44
 
45
  dict_models = {
46
  'en-es': model_es,
47
+ 'en-fr': model_fr,
48
+ 'en-zh': model_zh,
49
+ 'en-sw': model_sw,
50
  }
51
 
52
  dict_models_tr = {
53
  'en-es': model_tr_es,
54
+ 'en-fr': model_tr_fr,
55
+ 'en-zh': model_tr_zh,
56
+ 'en-sw': model_tr_sw,
57
  }
58
 
59
  dict_tokenizer_tr = {
60
  'en-es': tokenizer_es,
61
+ 'en-fr': tokenizer_fr,
62
+ 'en-zh': tokenizer_zh,
63
+ 'en-sw': tokenizer_sw,
64
  }
65
 
66
  saliency_examples = [
 
196
  # demo.load(None,None,None,js="plotsjs.js")
197
 
198
  if __name__ == "__main__":
199
+ demo.launch(share=True)