Spaces:
Build error
Build error
import gradio as gr | |
import os | |
# from transformers import AutoTokenizer | |
os.system('git clone https://github.com/EleutherAI/lm-evaluation-harness') | |
os.system('cd lm-evaluation-harness') | |
os.system('pip install -e .') | |
# 第一个功能:基于输入文本和对应的损失值对文本进行着色展示 | |
def color_text(text_list=["hi", "FreshEval"], loss_list=[0.1,0.7]): | |
""" | |
根据损失值为文本着色。 | |
""" | |
highlighted_text = [] | |
for text, loss in zip(text_list, loss_list): | |
# color = "#FF0000" if float(loss) > 0.5 else "#00FF00" | |
color=loss | |
# highlighted_text.append({"text": text, "bg_color": color}) | |
highlighted_text.append((text, color)) | |
print(highlighted_text) | |
return highlighted_text | |
# 第二个功能:根据 ID 列表和 tokenizer 将 ID 转换为文本,并展示 | |
def get_text(ids_list=[0.1,0.7], tokenizer=None): | |
""" | |
给定一个 ID 列表和 tokenizer 名称,将这些 ID 转换成文本。 | |
""" | |
return ['Hi', 'Adam'] | |
# tokenizer = AutoTokenizer.from_pretrained(tokenizer_name) | |
# text = tokenizer.decode(eval(ids_list), skip_special_tokens=True) | |
# 这里只是简单地返回文本,但是可以根据实际需求添加颜色或其他样式 | |
# return text | |
def get_ids_loss(text, tokenizer, model): | |
""" | |
给定一个文本,model and its tokenizer,返回其对应的 IDs 和损失值。 | |
""" | |
# tokenizer = AutoTokenizer.from_pretrained(tokenizer_name) | |
# model = AutoModelForCausalLM.from_pretrained(model_name) | |
# 这里只是简单地返回 IDs 和损失值,但是可以根据实际需求添加颜色或其他样式 | |
return [1, 2], [0.1, 0.7] | |
def color_pipeline(text=["hi", "FreshEval"], model=None): | |
""" | |
给定一个文本,返回其对应的着色文本。 | |
""" | |
tokenizer=None # get tokenizer | |
ids, loss = get_ids_loss(text, tokenizer, model) | |
text = get_text(ids, tokenizer) | |
return color_text(text, loss) | |
# TODO can this be global ? maybe need session to store info of the user | |
# 创建 Gradio 界面 | |
with gr.Blocks() as demo: | |
with gr.Tab("color your text"): | |
with gr.Row(): | |
text_input = gr.Textbox(label="input text", placeholder="input your text here...") | |
# TODO craw and drop the file | |
# loss_input = gr.Number(label="loss") | |
model_input = gr.Textbox(label="model name", placeholder="input your model name here...") | |
# TODO select models that can be used online | |
# TODO maybe add our own models | |
color_text_output = gr.HTML(label="colored text") | |
# gr.Markdown("## Text Examples") | |
# gr.Examples( | |
# [["hi", "Adam"], [0.1,0.7]], | |
# [text_input, loss_input], | |
# cache_examples=True, | |
# fn=color_text, | |
# outputs=color_text_output | |
# ) | |
color_text_button = gr.Button("color the text").click(color_pipeline, inputs=[text_input, model_input], outputs=gr.HighlightedText(label="colored text")) | |
date_time_input = gr.Textbox(label="the date when the text is generated")#TODO add date time input | |
description_input = gr.Textbox(label="description of the text") | |
submit_button = gr.Button("submit a post or record").click() | |
#TODO add model and its score | |
with gr.Tab('test your qeustion'): | |
''' | |
use extract, or use ppl | |
''' | |
question=gr.Textbox(placeholder='input your question here...') | |
answer=gr.Textbox(placeholder='input your answer here...') | |
other_choices=gr.Textbox(placeholder='input your other choices here...') | |
test_button=gr.Button('test').click() | |
#TODO add the model and its score | |
def test_question(question, answer, other_choices): | |
''' | |
use extract, or use ppl | |
''' | |
answer_ppl, other_choices_ppl = get_ppl(question, answer, other_choices) | |
return answer_ppl, other_choices_ppl | |
with gr.Tab("model text ppl with time"): | |
''' | |
see the matplotlib example, to see ppl with time, select the models | |
''' | |
# load the json file with time, | |
with gr.Tab("model quesion acc with time"): | |
''' | |
see the matplotlib example, to see ppl with time, select the models | |
''' | |
# | |
with gr.Tab("hot questions"): | |
''' | |
see the questions and answers | |
''' | |
with gr.Tab("ppl"): | |
''' | |
see the questions | |
''' | |
demo.launch(debug=True) | |
# import gradio as gr | |
# import os | |
# os.system('python -m spacy download en_core_web_sm') | |
# import spacy | |
# from spacy import displacy | |
# nlp = spacy.load("en_core_web_sm") | |
# def text_analysis(text): | |
# doc = nlp(text) | |
# html = displacy.render(doc, style="dep", page=True) | |
# html = ( | |
# "<div style='max-width:100%; max-height:360px; overflow:auto'>" | |
# + html | |
# + "</div>" | |
# ) | |
# pos_count = { | |
# "char_count": len(text), | |
# "token_count": 0, | |
# } | |
# pos_tokens = [] | |
# for token in doc: | |
# pos_tokens.extend([(token.text, token.pos_), (" ", None)]) | |
# return pos_tokens, pos_count, html | |
# demo = gr.Interface( | |
# text_analysis, | |
# gr.Textbox(placeholder="Enter sentence here..."), | |
# ["highlight", "json", "html"], | |
# examples=[ | |
# ["What a beautiful morning for a walk!"], | |
# ["It was the best of times, it was the worst of times."], | |
# ], | |
# ) | |
# demo.launch() | |
# # lm-eval | |
# # lm-evaluation-harness |