jijivski
dynamically add choices
e2bf898
raw
history blame
2.34 kB
# seem not working here...
import altair
import gradio as gr
from math import sqrt
import matplotlib.pyplot as plt
import numpy as np
import plotly.express as px
import pandas as pd
import pdb
def outbreak(plot_type, r, month, countries, social_distancing):
months = ["January", "February", "March", "April", "May"]
m = months.index(month)
start_day = 30 * m
final_day = 30 * (m + 1)
x = np.arange(start_day, final_day + 1)
pop_count = {"USA": 350, "Canada": 40, "Mexico": 300, "UK": 120}
if social_distancing:
r = sqrt(r)
# df = pd.DataFrame({"day": x})
# for country in countries:
# df[country] = x ** (r) * (pop_count[country] + 1)
df=pd.read_csv('../data/ob.csv')
print(df.head())
# pdb.set_trace()
if plot_type == "Matplotlib":
fig = plt.figure()
plt.plot(df["day"], df[countries].to_numpy())
plt.title("Outbreak in " + month)
plt.ylabel("Cases")
plt.xlabel("Days since Day 0")
plt.legend(countries)
return fig
elif plot_type == "Plotly":
fig = px.line(df, x="day", y=countries)
fig.update_layout(
title="Outbreak in " + month,
xaxis_title="Cases",
yaxis_title="Days Since Day 0",
)
return fig
elif plot_type == "Altair":
df = df.melt(id_vars="day").rename(columns={"variable": "country"})
fig = altair.Chart(df).mark_line().encode(x="day", y='value', color='country')
return fig
else:
raise ValueError("A plot type must be selected")
inputs = [
gr.Dropdown(["Matplotlib", "Plotly", "Altair"], label="Plot Type"),
gr.Slider(1, 4, 3.2, label="R"),
gr.Dropdown(["January", "February", "March", "April", "May"], label="Month"),
gr.CheckboxGroup(
["USA", "Canada", "Mexico", "UK"], label="Countries", value=["USA", "Canada"]
),
gr.Checkbox(label="Social Distancing?"),
]
outputs = gr.Plot()
demo = gr.Interface(
fn=outbreak,
inputs=inputs,
outputs=outputs,
examples=[
["Matplotlib", 2, "March", ["Mexico", "UK"], True],
["Altair", 2, "March", ["Mexico", "Canada"], True],
["Plotly", 3.6, "February", ["Canada", "Mexico", "UK"], False],
],
cache_examples=True,
)
if __name__ == "__main__":
demo.launch()