jieun
vit
215e205
import requests
import torch
from io import BytesIO
from PIL import Image
from transformers import ViTImageProcessor, ViTForImageClassification
import streamlit as st
# @st.cache_data
def get_model_transformers():
# Init model, transforms
model = ViTForImageClassification.from_pretrained('nateraw/vit-age-classifier')
transforms = ViTImageProcessor.from_pretrained('nateraw/vit-age-classifier')
return model, transforms
st.title("๋‚˜์ด๋ฅผ ์˜ˆ์ธกํ•ด๋ด…์‹œ๋‹ค!")
uploaded_file = st.file_uploader("๋‚˜์ด๋ฅผ ์˜ˆ์ธกํ•  ์‚ฌ๋žŒ์˜ ์ด๋ฏธ์ง€๋ฅผ ์—…๋กœ๋“œํ•˜์„ธ์š”.", type=["jpg"])
if uploaded_file:
# print(f"uploaded file: {uploaded_file}")
st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)
# Get example image from official fairface repo + read it in as an image
# r = requests.get('https://github.com/dchen236/FairFace/blob/master/detected_faces/race_Asian_face0.jpg?raw=true')
# im = Image.open(BytesIO(r.content))
im = Image.open(uploaded_file)
model, transforms = get_model_transformers()
# Transform our image and pass it through the model
inputs = transforms(im, return_tensors='pt')
output = model(**inputs)
# Predicted Class probabilities
proba = output.logits.softmax(1)
values, indices = torch.topk(proba, k=5)
result_dict = {model.config.id2label[i.item()]: v.item() for i, v in zip(indices.numpy()[0], values.detach().numpy()[0])}
first_result = list(result_dict.keys())[0]
print(f'predicted result:{result_dict}')
print(f'first_result: {first_result}')
st.header('๊ฒฐ๊ณผ')
st.subheader(f'์˜ˆ์ธก๋œ ๋‚˜์ด๋Š” {first_result} ์ž…๋‹ˆ๋‹ค')
for key, value in result_dict.items():
st.write(f'{key}: {value * 100:.2f}%')