Spaces:
Sleeping
Sleeping
import gradio as gr | |
from joblib import dump, load | |
def predict(fea1, fea2, fea3, fea4, fea5, fea6, fea7, fea8): | |
import numpy as np | |
# 1. load features | |
test_feature = np.array([[fea1, fea2, fea3, fea4, fea5, fea6, fea7, fea8]]) | |
# 2. scale the test features | |
# 2.1 Load scaler file | |
scaler = load('scaler.joblib') | |
# 2.2 normalize test features using statistics from training data | |
test_feature_normalized = scaler.transform(test_feature) | |
print("shape: ", test_feature_normalized.shape) | |
# 3. Make a prediction | |
# 3.1 load the machine learning | |
model = load('knn_model.joblib') | |
# 3.2 call model to get prediction | |
pred = model.predict(test_feature_normalized) | |
return pred | |
input_module1 = gr.Slider(-124.35, -114.35, step = 0.5, label = "Longitude") | |
input_module2 = gr.Slider(32, 41, step = 0.5, label = "Latitude") | |
input_module3 = gr.Slider(1, 52, step = 1, label = "Housing Median Age (Year)") | |
input_module4 = gr.Slider(1, 39320, step = 5, label = "Total Rooms") | |
input_module5 = gr.Slider(1, 6445, step = 5, label = "Total Bedrooms") | |
input_module6 = gr.Slider(3, 35682, step = 5, label = "Population") | |
input_module7 = gr.Slider(1, 6081, step = 5, label = "Households") | |
input_module8 = gr.Slider(0, 15, step = 0.5, label = "Median Income") | |
output_module1 = gr.Textbox(label = "Predicted Housing Prices") | |
gr.Interface(fn = predict, | |
inputs = [input_module1, input_module2, input_module3, input_module4, input_module5, input_module6, input_module7, input_module8], | |
outputs = [output_module1]).launch() |