Spaces:
Sleeping
Sleeping
| import json | |
| import os | |
| import pandas as pd | |
| import torch | |
| import yaml | |
| from embeddings import compute_embeddings, load_model | |
| # Load configurations | |
| with open("configs.yaml", "r") as file: | |
| configs = yaml.safe_load(file) | |
| # Load and process the movie dataset | |
| movies_data = pd.read_csv(configs['dataset']) | |
| # Define columns to drop that are not needed | |
| columns_drop = ['budget', 'homepage', 'id', 'original_language', 'original_title', | |
| 'popularity', 'revenue', 'spoken_languages', 'status', 'tagline'] | |
| movies_data.drop(columns=columns_drop, axis=1, inplace=True) | |
| movies_data.dropna(inplace=True) # Drop rows with missing values | |
| # Convert JSON string columns to a comma-separated string of names | |
| columns_json_to_csv = ['genres', 'keywords', 'production_companies', 'production_countries'] | |
| for col in columns_json_to_csv: | |
| movies_data[col] = movies_data[col].apply( | |
| lambda json_str: ', '.join([item["name"] for item in json.loads(json_str)]) | |
| ) | |
| # Extract the year from 'release_date' | |
| movies_data['release_date'] = pd.to_datetime(movies_data['release_date']).dt.year | |
| # Convert 'runtime' to integers | |
| movies_data['runtime'] = movies_data['runtime'].astype(int) | |
| # Combine 'overview', 'genres', and 'keywords' into a single string for each movie | |
| movies_data_processed = movies_data[['overview', 'genres', 'keywords']].apply( | |
| lambda row: '. '.join([f"{col.capitalize()}: {val}" for col, val in row.items()]), | |
| axis=1 | |
| ).tolist() | |
| # Save the processed dataset | |
| movies_data.to_csv(configs['processed_dataset'], index=False) | |
| # Process embeddings for each model | |
| for model_name in configs['hf_models']: | |
| model, tokenizer = load_model(model_name) | |
| movie_embeddings = compute_embeddings(movies_data_processed, model, tokenizer) | |
| embedding_dir_path = f"{configs['movie_embeddings']}/{model_name}" | |
| embedding_file_path = f"{embedding_dir_path}/{configs['movie_embeddings']}.pt" | |
| os.makedirs(embedding_dir_path, exist_ok=True) | |
| torch.save(movie_embeddings, embedding_file_path) | |
| print(f"Saved embeddings for {model_name}") | |