DesignEdit / src /demo /model.py
jiayueru
Add app
7352753
raw
history blame
23.5 kB
import numpy as np
import torch
from diffusers import DDIMScheduler
import cv2
from utils.sdxl import sdxl
from utils.inversion import Inversion
import math
import torch.nn.functional as F
import utils.utils as utils
import os
import matplotlib.pyplot as plt
from PIL import Image, ImageDraw, ImageFont
MAX_NUM_WORDS = 77
def init_model(model_path, model_dtype="fp16", num_ddim_steps=50):
device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)
if model_dtype == "fp16":
torch_dtype = torch.float16
elif model_dtype == "fp32":
torch_dtype = torch.float32
pipe = sdxl.from_pretrained(model_path, torch_dtype=torch_dtype, use_safetensors=True, variant=model_dtype,scheduler=scheduler)
pipe.to(device)
inversion = Inversion(pipe,num_ddim_steps)
return pipe, inversion
class LayerFusion:
def get_mask(self, maps, alpha, use_pool,x_t):
k = 1
maps = (maps * alpha).sum(-1).mean(1)
if use_pool:
maps = F.max_pool2d(maps, (k * 2 + 1, k * 2 + 1), (1, 1), padding=(k, k))
mask = F.interpolate(maps, size=(x_t.shape[2:])) #[2, 1, 128, 128]
mask = mask / mask.max(2, keepdims=True)[0].max(3, keepdims=True)[0]
mask=(mask - mask.min ()) / (mask.max () - mask.min ())
mask = mask.gt(self.mask_threshold)
self.mask=mask
mask = mask[:1] + mask
return mask
def get_one_mask(self, maps, use_pool, x_t, idx_lst, i=None, sav_img=False):
k=1
if sav_img is False:
mask_tot = 0
for obj in idx_lst:
mask = maps[0, :, :, :, obj].mean(0).reshape(1, 1, 32, 32)
if use_pool:
mask = F.max_pool2d(mask, (k * 2 + 1, k * 2 + 1), (1, 1), padding=(k, k))
mask = F.interpolate(mask, size=(x_t.shape[2:]))
mask = mask / mask.max(2, keepdims=True)[0].max(3, keepdims=True)[0]
mask=(mask - mask.min ()) / (mask.max () - mask.min ())
mask = mask.gt(self.mask_threshold[int(self.counter/10)])
mask_tot |= mask
mask = mask_tot
return mask
else:
for obj in idx_lst:
mask = maps[0, :, :, :, obj].mean(0).reshape(1, 1, 32, 32)
if use_pool:
mask = F.max_pool2d(mask, (k * 2 + 1, k * 2 + 1), (1, 1), padding=(k, k))
mask = F.interpolate(mask, size=(1024, 1024))#[1, 1, 1024, 1024]
mask = mask / mask.max(2, keepdims=True)[0].max(3, keepdims=True)[0]
mask=(mask - mask.min ()) / (mask.max () - mask.min ())
mask = mask.gt(0.6)
mask = np.array(mask[0][0].clone().cpu()).astype(np.uint8)*255
cv2.imwrite(f'./img/sam_mask/{self.blend_list[i][0]}_{self.counter}.jpg', mask)
return mask
def mv_op(self, mp, op, scale=0.2, ones=False, flip=None):
_, b, H, W = mp.shape
if ones == False:
new_mp = torch.zeros_like(mp)
else:
new_mp = torch.ones_like(mp)
K = int(scale*W)
if op == 'right':
new_mp[:, :, :, K:] = mp[:, :, :, 0:W-K]
elif op == 'left':
new_mp[:, :, :, 0:W-K] = mp[:, :, :, K:]
elif op == 'down':
new_mp[:, :, K:, :] = mp[:, :, 0:W-K, :]
elif op == 'up':
new_mp[:, :, 0:W-K, :] = mp[:, :, K:, :]
if flip is not None:
new_mp = torch.flip(new_mp, dims=flip)
return new_mp
def mv_layer(self, x_t, bg_id, fg_id, op_id):
bg_img = x_t[bg_id:(bg_id+1)].clone()
fg_img = x_t[fg_id:(fg_id+1)].clone()
fg_mask = self.fg_mask_list[fg_id-3]
op_list = self.op_list[fg_id-3]
for item in op_list:
op, scale = item[0], item[1]
if scale != 0:
fg_img = self.mv_op(fg_img, op=op, scale=scale)
fg_mask = self.mv_op(fg_mask, op=op, scale=scale)
x_t[op_id:(op_id+1)] = bg_img*(1-fg_mask) + fg_img*fg_mask
def __call__(self, x_t):
self.counter += 1
# inpainting
if self.blend_time[0] <= self.counter <= self.blend_time[1]:
x_t[1:2] = x_t[1:2]*self.remove_mask + x_t[0:1]*(1-self.remove_mask)
if self.counter == self.blend_time[1] + 1 and self.mode != "removal":
b = x_t.shape[0]
bg_id = 1 #bg_layer
op_id = 2 #canvas
for fg_id in range(3, b): #fg_layer
self.mv_layer(x_t, bg_id=bg_id, fg_id=fg_id, op_id=op_id)
bg_id = op_id
return x_t
def __init__(self, remove_mask, fg_mask_list, refine_mask=None,
blend_time=[0, 40],
mode="removal", op_list=None):
self.counter = 0
self.mode = mode
self.op_list = op_list
self.blend_time = blend_time
self.remove_mask = remove_mask
self.refine_mask = refine_mask
if self.refine_mask is not None:
self.new_mask = self.remove_mask + self.refine_mask
self.new_mask[self.new_mask>0] = 1
else:
self.new_mask = None
self.fg_mask_list = fg_mask_list
class Control():
def step_callback(self, x_t):
if self.layer_fusion is not None:
x_t = self.layer_fusion(x_t)
return x_t
def __init__(self, layer_fusion):
self.layer_fusion = layer_fusion
def register_attention_control(model, controller, mask_time=[0, 40], refine_time=[0, 25]):
def ca_forward(self, place_in_unet):
to_out = self.to_out
if type(to_out) is torch.nn.modules.container.ModuleList:
to_out = self.to_out[0]
else:
to_out = self.to_out
self.counter = 0 #time
def forward(hidden_states, encoder_hidden_states=None, attention_mask=None): #self_attention
x = hidden_states.clone()
context = encoder_hidden_states
is_cross = context is not None
if is_cross is False:
if controller.layer_fusion is not None and (mask_time[0] < self.counter < mask_time[1]):
b, i, j = x.shape
H = W = int(math.sqrt(i))
x_old = x.clone()
x = x.reshape(b, H, W, j)
new_mask = controller.layer_fusion.remove_mask
if new_mask is not None:
new_mask[new_mask>0] = 1
new_mask = F.interpolate(new_mask.to(dtype=torch.float32).clone(), size=(H, W), mode='bilinear').cuda()
new_mask = (1 - new_mask).reshape(1, H, W).unsqueeze(-1)
if (refine_time[0] < self.counter <= refine_time[1]) and controller.layer_fusion.refine_mask is not None:
new_mask = controller.layer_fusion.new_mask
new_mask = F.interpolate(new_mask.to(dtype=torch.float32).clone(), size=(H, W), mode='bilinear').cuda()
new_mask = (1 - new_mask).reshape(1, H, W).unsqueeze(-1)
idx = 1 #inpaiint_idx:bg
x[int(b/2)+idx, :, :] = (x[int(b/2)+idx, :, :]*new_mask[0])
x = x.reshape(b, i, j)
if is_cross:
q = self.to_q(x)
k = self.to_k(context)
v = self.to_v(context)
else:
context = x
q = self.to_q(hidden_states)
k = self.to_k(x)
v = self.to_v(hidden_states)
q = self.head_to_batch_dim(q)
k = self.head_to_batch_dim(k)
v = self.head_to_batch_dim(v)
if hasattr(controller, 'count_layers'):
controller.count_layers(place_in_unet,is_cross)
sim = torch.einsum("b i d, b j d -> b i j", q.clone(), k.clone()) * self.scale
attn = sim.softmax(dim=-1)
out = torch.einsum("b i j, b j d -> b i d", attn, v)
out = self.batch_to_head_dim(out)
global global_cnt
self.counter += 1
return to_out(out)
return forward
def register_recr(net_, count, place_in_unet):
if net_.__class__.__name__ == 'Attention':
net_.forward = ca_forward(net_, place_in_unet)
return count + 1
elif hasattr(net_, 'children'):
for net__ in net_.children():
count = register_recr(net__, count, place_in_unet)
return count
cross_att_count = 0
sub_nets = model.unet.named_children()
for net in sub_nets:
if "down" in net[0]:
cross_att_count += register_recr(net[1], 0, "down")
elif "up" in net[0]:
cross_att_count += register_recr(net[1], 0, "up")
elif "mid" in net[0]:
cross_att_count += register_recr(net[1], 0, "mid")
controller.num_att_layers = cross_att_count
class DesignEdit():
def __init__(self, pretrained_model_path="/home/jyr/model/stable-diffusion-xl-base-1.0"):
self.model_dtype = "fp16"
self.pretrained_model_path=pretrained_model_path
self.num_ddim_steps = 50
self.mask_time = [0, 40]
self.op_list = {}
self.attend_scale = {}
self.ldm_model, self.inversion= init_model(model_path=self.pretrained_model_path, model_dtype=self.model_dtype, num_ddim_steps=self.num_ddim_steps)
def run_remove(self, original_image=None, mask_1=None, mask_2=None, mask_3=None, refine_mask=None,
ori_1=None, ori_2=None, ori_3=None,
prompt="", save_dir="./tmp", mode='removal',):
# 01-1:
if original_image is None:
original_image = ori_1 if ori_1 is not None else ori_2 if ori_2 is not None else ori_3
op_list = None
attend_scale = 20
sample_ref_match={0 : 0, 1 : 0}
ori_shape = original_image.shape
# 01-2: prepare: image_gt, remove_mask, fg_mask_list, refine_mask
image_gt = Image.fromarray(original_image).resize((1024, 1024))
image_gt = np.stack([np.array(image_gt)])
mask_list = [mask_1, mask_2, mask_3]
remove_mask = utils.attend_mask(utils.add_masks_resized(mask_list), attend_scale=attend_scale) # numpy to tensor
fg_mask_list = None
refine_mask = utils.attend_mask(utils.convert_and_resize_mask(refine_mask)) if refine_mask is not None else None
# 01-3: prepare: prompts, blend_time, refine_time
prompts = len(sample_ref_match)*[prompt] # 2
blend_time = [0, 41]
refine_time = [0, 25]
# 02: invert
_, x_t, x_stars, prompt_embeds, pooled_prompt_embeds = self.inversion.invert(image_gt, prompts, inv_batch_size=1)
# 03: init layer_fusion and controller
lb = LayerFusion(remove_mask=remove_mask, fg_mask_list=fg_mask_list, refine_mask=refine_mask,
blend_time=blend_time, mode=mode, op_list=op_list)
controller = Control(layer_fusion=lb)
register_attention_control(model=self.ldm_model, controller=controller, mask_time=self.mask_time, refine_time=refine_time)
# 04: generate images
images = self.ldm_model(controller=controller, prompt=prompts,
latents=x_t, x_stars=x_stars,
negative_prompt_embeds=prompt_embeds,
negative_pooled_prompt_embeds=pooled_prompt_embeds,
sample_ref_match=sample_ref_match)
folder = None
utils.view_images(images, folder=folder)
return [cv2.resize(images[1], (ori_shape[1], ori_shape[0]))]
def run_zooming(self, original_image, width_scale=1, height_scale=1, prompt="", save_dir="./tmp", mode='removal'):
# 01-1:
op_list = {0: ['zooming', [height_scale, width_scale]]}
ori_shape = original_image.shape
attend_scale = 30
sample_ref_match = {0 : 0, 1 : 0}
# 01-2: prepare: image_gt, remove_mask, fg_mask_list, refine_mask
img_new, mask = utils.zooming(original_image, [height_scale, width_scale])
img_new_copy = img_new.copy()
mask_copy = mask.copy()
image_gt = Image.fromarray(img_new).resize((1024, 1024))
image_gt = np.stack([np.array(image_gt)])
remove_mask = utils.attend_mask(utils.convert_and_resize_mask(mask), attend_scale=attend_scale) # numpy to tensor
fg_mask_list = None
refine_mask = None
# 01-3: prepare: prompts, blend_time, refine_time
prompts = len(sample_ref_match)*[prompt] # 2
blend_time = [0, 41]
refine_time = [0, 25]
# 02: invert
_, x_t, x_stars, prompt_embeds, pooled_prompt_embeds = self.inversion.invert(image_gt, prompts, inv_batch_size=1)
# 03: init layer_fusion and controller
lb = LayerFusion(remove_mask=remove_mask, fg_mask_list=fg_mask_list, blend_time=blend_time,
mode=mode, op_list=op_list)
controller = Control(layer_fusion=lb)
register_attention_control(model=self.ldm_model, controller=controller, mask_time=self.mask_time, refine_time=refine_time)
# 04: generate images
images = self.ldm_model(controller=controller, prompt=prompts,
latents=x_t, x_stars=x_stars,
negative_prompt_embeds=prompt_embeds,
negative_pooled_prompt_embeds=pooled_prompt_embeds,
sample_ref_match=sample_ref_match)
folder = None
utils.view_images(images, folder=folder)
resized_img = cv2.resize(images[1], (ori_shape[1], ori_shape[0]))
return [resized_img], [img_new_copy], [mask_copy]
def run_panning(self, original_image, w_direction, w_scale, h_direction, h_scale, prompt="", save_dir="./tmp", mode='removal'):
# 01-1: prepare: op_list, attend_scale, sample_ref_match
ori_shape = original_image.shape
attend_scale = 30
sample_ref_match = {0 : 0, 1 : 0}
# 01-2: prepare: image_gt, remove_mask, fg_mask_list, refine_mask
op_list = [[w_direction, w_scale], [h_direction, h_scale]]
img_new, mask = utils.panning(original_image, op_list=op_list)
img_new_copy = img_new.copy()
mask_copy = mask.copy()
image_gt = Image.fromarray(img_new).resize((1024, 1024))
image_gt = np.stack([np.array(image_gt)])
remove_mask = utils.attend_mask(utils.convert_and_resize_mask(mask), attend_scale=attend_scale) # numpy to tensor
fg_mask_list = None
refine_mask = None
# 01-3: prepare: prompts, blend_time, refine_time
prompts = len(sample_ref_match)*[prompt] # 2
blend_time = [0, 41]
refine_time = [0, 25]
# 02: invert
_, x_t, x_stars, prompt_embeds, pooled_prompt_embeds = self.inversion.invert(image_gt, prompts, inv_batch_size=1)
# 03: init layer_fusion and controller
lb = LayerFusion(remove_mask=remove_mask, fg_mask_list=fg_mask_list, blend_time=blend_time,
mode=mode, op_list=op_list)
controller = Control(layer_fusion=lb)
register_attention_control(model=self.ldm_model, controller=controller, mask_time=self.mask_time, refine_time=refine_time)
# 04: generate images
images = self.ldm_model(controller=controller, prompt=prompts,
latents=x_t, x_stars=x_stars,
negative_prompt_embeds=prompt_embeds,
negative_pooled_prompt_embeds=pooled_prompt_embeds,
sample_ref_match=sample_ref_match)
folder = None
utils.view_images(images, folder=folder)
resized_img = cv2.resize(images[1], (ori_shape[1], ori_shape[0]))
return [resized_img], [img_new_copy], [mask_copy]
# layer-wise multi-object editing
def process_layer_states(self, layer_states):
image_paths = []
mask_paths = []
op_list = []
for state in layer_states:
img, mask, dx, dy, resize, w_flip, h_flip = state
if img is not None:
img = cv2.resize(img, (1024, 1024))
mask = utils.convert_and_resize_mask(mask)
dx_command = ['right', dx] if dx > 0 else ['left', -dx]
dy_command = ['up', dy] if dy > 0 else ['down', -dy]
flip_code = None
if w_flip == "left/right" and h_flip == "down/up":
flip_code = -1
elif w_flip == "left/right":
flip_code = 1 # ๆˆ–่€…ๅ…ถไป–้ป˜่ฎคๅ€ผ๏ผŒๆ นๆฎๆ‚จ็š„้œ€่ฆ่ฎพ็ฝฎ
elif h_flip == "down/up":
flip_code = 0
op_list.append([dx_command, dy_command])
img, mask, _ = utils.resize_image_with_mask(img, mask, resize)
img, mask, _ = utils.flip_image_with_mask(img, mask, flip_code=flip_code)
image_paths.append(img)
mask_paths.append(utils.attend_mask(mask))
sample_ref_match = {0: 0, 1: 0, 2: 0, 3: 1, 4: 2, 5: 3}
required_length = len(image_paths) + 3
truncated_sample_ref_match = {k: sample_ref_match[k] for k in sorted(sample_ref_match.keys())[:required_length]}
return image_paths, mask_paths, op_list, truncated_sample_ref_match
def run_layer(self, bg_img, l1_img, l1_dx, l1_dy, l1_resize, l1_w_flip, l1_h_flip,
l2_img, l2_dx, l2_dy, l2_resize, l2_w_flip, l2_h_flip,
l3_img, l3_dx, l3_dy, l3_resize, l3_w_flip, l3_h_flip,
bg_mask, l1_mask, l2_mask, l3_mask,
bg_ori=None, l1_ori=None, l2_ori=None, l3_ori=None,
prompt="", save_dir="./tmp", mode='layerwise'):
# 00๏ผš prepare: layer-wise states
bg_img = bg_ori if bg_ori is not None else bg_img
l1_img = l1_ori if l1_ori is not None else l1_img
l2_img = l2_ori if l2_ori is not None else l2_img
l3_img = l3_ori if l3_ori is not None else l3_img
for mask in [bg_mask, l1_mask, l2_mask, l3_mask]:
if mask is None:
mask = np.zeros((1024, 1024), dtype=np.uint8)
else:
mask = utils.convert_and_resize_mask(mask)
l1_state = [l1_img, l1_mask, l1_dx, l1_dy, l1_resize, l1_w_flip, l1_h_flip]
l2_state = [l2_img, l2_mask, l2_dx, l2_dy, l2_resize, l2_w_flip, l2_h_flip]
l3_state = [l3_img, l3_mask, l3_dx, l3_dy, l3_resize, l3_w_flip, l3_h_flip]
ori_shape = bg_img.shape
image_paths, fg_mask_list, op_list, sample_ref_match = self.process_layer_states([l1_state, l2_state, l3_state])
if image_paths == []:
mode = "removal"
# 01-1: prepare: image_gt, remove_mask, fg_mask_list, refine_mask
attend_scale = 20
image_gt = [bg_img] + image_paths
image_gt = [Image.fromarray(img).resize((1024, 1024)) for img in image_gt]
image_gt = np.stack(image_gt)
remove_mask = utils.attend_mask(bg_mask, attend_scale=attend_scale)
refine_mask = None
# 01-2: prepare: promptrun_masks, blend_time, refine_time
prompts = len(sample_ref_match)*[prompt] # 2
blend_time = [0, 41]
refine_time = [0, 25]
attend_scale = []
# 02: invert
_, x_t, x_stars, prompt_embeds, pooled_prompt_embeds = self.inversion.invert(image_gt, prompts, inv_batch_size=len(image_gt))
# 03: init layer_fusion and controller
lb = LayerFusion(remove_mask=remove_mask, fg_mask_list=fg_mask_list, blend_time=blend_time, refine_mask=refine_mask,
mode=mode, op_list=op_list)
controller = Control(layer_fusion=lb)
register_attention_control(model=self.ldm_model, controller=controller, mask_time=self.mask_time, refine_time=refine_time)
# 04: generate images
images = self.ldm_model(controller=controller, prompt=prompts,
latents=x_t, x_stars=x_stars,
negative_prompt_embeds=prompt_embeds,
negative_pooled_prompt_embeds=pooled_prompt_embeds,
sample_ref_match=sample_ref_match)
folder = None
utils.view_images(images, folder=folder)
if mode == 'removal':
resized_img = cv2.resize(images[1], (ori_shape[1], ori_shape[0]))
else:
resized_img = cv2.resize(images[2], (ori_shape[1], ori_shape[0]))
return [resized_img]
def run_moving(self, bg_img, bg_ori, bg_mask, l1_dx, l1_dy, l1_resize,
l1_w_flip=None, l1_h_flip=None, selected_points=None,
prompt="", save_dir="./tmp", mode='layerwise'):
# 00๏ผš prepare: layer-wise states
bg_img = bg_ori if bg_ori is not None else bg_img
l1_img = bg_img
if bg_mask is None:
bg_mask = np.zeros((1024, 1024), dtype=np.uint8)
else:
bg_mask = utils.convert_and_resize_mask(bg_mask)
l1_mask = bg_mask
l1_state = [l1_img, l1_mask, l1_dx, l1_dy, l1_resize, l1_w_flip, l1_h_flip]
ori_shape = bg_img.shape
image_paths, fg_mask_list, op_list, sample_ref_match = self.process_layer_states([l1_state])
# 01-1: prepare: image_gt, remove_mask, fg_mask_list, refine_mask
attend_scale = 20
image_gt = [bg_img] + image_paths
image_gt = [Image.fromarray(img).resize((1024, 1024)) for img in image_gt]
image_gt = np.stack(image_gt)
remove_mask = utils.attend_mask(bg_mask, attend_scale=attend_scale)
refine_mask = None
# 01-2: prepare: promptrun_masks, blend_time, refine_time
prompts = len(sample_ref_match)*[prompt] # 2
blend_time = [0, 41]
refine_time = [0, 25]
attend_scale = []
# 02: invert
_, x_t, x_stars, prompt_embeds, pooled_prompt_embeds = self.inversion.invert(image_gt, prompts, inv_batch_size=len(image_gt))
# 03: init layer_fusion and controller
lb = LayerFusion(remove_mask=remove_mask, fg_mask_list=fg_mask_list, blend_time=blend_time, refine_mask=refine_mask,
mode=mode, op_list=op_list)
controller = Control(layer_fusion=lb)
register_attention_control(model=self.ldm_model, controller=controller, mask_time=self.mask_time, refine_time=refine_time)
# 04: generate images
images = self.ldm_model(controller=controller, prompt=prompts,
latents=x_t, x_stars=x_stars,
negative_prompt_embeds=prompt_embeds,
negative_pooled_prompt_embeds=pooled_prompt_embeds,
sample_ref_match=sample_ref_match)
folder = None
utils.view_images(images, folder=folder)
resized_img = cv2.resize(images[2], (ori_shape[1], ori_shape[0]))
return [resized_img]
# turn mask to 1024x1024 unit-8
def run_mask(self, mask_1, mask_2, mask_3, mask_4):
mask_list = [mask_1, mask_2, mask_3, mask_4]
final_mask = utils.add_masks_resized(mask_list)
return final_mask