Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import os | |
| from PIL import Image | |
| import subprocess | |
| import hashlib | |
| os.system('pip install -e ./simple-knn') | |
| os.system('pip install -e ./diff-gaussian-rasterization') | |
| # check if there is a picture uploaded or selected | |
| def check_img_input(control_image): | |
| if control_image is None: | |
| raise gr.Error("Please select or upload an input image") | |
| def optimize(image_block: Image.Image, preprocess_chk=True, elevation_slider=0): | |
| stage_1_output = optimize_stage_1(image_block, preprocess_chk, elevation_slider) | |
| stage_2_output = optimize_stage_2(image_block, elevation_slider) | |
| return stage_1_output, stage_2_output | |
| def optimize_stage_1(image_block: Image.Image, preprocess_chk: bool, elevation_slider: float): | |
| if not os.path.exists('tmp_data'): | |
| os.makedirs('tmp_data') | |
| img_hash = hashlib.sha256(image_block.tobytes()).hexdigest() | |
| if preprocess_chk: | |
| # save image to a designated path | |
| image_block.save(f'tmp_data/{img_hash}.png') | |
| # preprocess image | |
| subprocess.run([f'python process.py tmp_data/{img_hash}.png'], shell=True) | |
| else: | |
| image_block.save(f'tmp_data/{img_hash}_rgba.png') | |
| # stage 1 | |
| subprocess.run([ | |
| f'python main.py --config configs/image.yaml input=tmp_data/{img_hash}_rgba.png save_path={img_hash} mesh_format=glb elevation={elevation_slider} force_cuda_rast=True'], | |
| shell=True) | |
| return f'logs/{img_hash}_mesh.glb' | |
| def optimize_stage_2(image_block: Image.Image, elevation_slider: float): | |
| img_hash = hashlib.sha256(image_block.tobytes()).hexdigest() | |
| # stage 2 | |
| subprocess.run([ | |
| f'python main2.py --config configs/image.yaml input=tmp_data/{img_hash}_rgba.png save_path={img_hash} mesh_format=glb elevation={elevation_slider} force_cuda_rast=True'], | |
| shell=True) | |
| return f'logs/{img_hash}.glb' | |
| if __name__ == "__main__": | |
| _TITLE = '''DreamGaussian: Generative Gaussian Splatting for Efficient 3D Content Creation''' | |
| _DESCRIPTION = ''' | |
| <div> | |
| <a style="display:inline-block" href="https://dreamgaussian.github.io"><img src='https://img.shields.io/badge/public_website-8A2BE2'></a> | |
| <a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/2309.16653"><img src="https://img.shields.io/badge/2309.16653-f9f7f7?logo="></a> | |
| <a style="display:inline-block; margin-left: .5em" href='https://github.com/dreamgaussian/dreamgaussian'><img src='https://img.shields.io/github/stars/dreamgaussian/dreamgaussian?style=social'/></a> | |
| </div> | |
| We present DreamGausssion, a 3D content generation framework that significantly improves the efficiency of 3D content creation. | |
| ''' | |
| _DUPLICATE =''' | |
| [](https://huggingface.co/spaces/jiawei011/dreamgaussian?duplicate=true) | |
| ''' | |
| _IMG_USER_GUIDE = "Please upload an image in the block above (or choose an example above) and click **Generate 3D**." | |
| # load images in 'data' folder as examples | |
| example_folder = os.path.join(os.path.dirname(__file__), 'data') | |
| example_fns = os.listdir(example_folder) | |
| example_fns.sort() | |
| examples_full = [os.path.join(example_folder, x) for x in example_fns if x.endswith('.png')] | |
| # Compose demo layout & data flow | |
| with gr.Blocks(title=_TITLE, theme=gr.themes.Soft()) as demo: | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| gr.Markdown('# ' + _TITLE) | |
| with gr.Column(scale=0): | |
| gr.Markdown(_DUPLICATE) | |
| gr.Markdown(_DESCRIPTION) | |
| # Image-to-3D | |
| with gr.Row(variant='panel'): | |
| left_column = gr.Column(scale=5) | |
| with left_column: | |
| image_block = gr.Image(type='pil', image_mode='RGBA', height=290, label='Input image', tool=None) | |
| elevation_slider = gr.Slider(-90, 90, value=0, step=1, label='Estimated elevation angle') | |
| gr.Markdown( | |
| "default to 0 (horizontal), range from [-90, 90]. If you upload a look-down image, try a value like -30") | |
| preprocess_chk = gr.Checkbox(True, | |
| label='Preprocess image automatically (remove background and recenter object)') | |
| with gr.Column(scale=5): | |
| obj3d_stage1 = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model (Stage 1)") | |
| obj3d = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model (Final)") | |
| with left_column: | |
| gr.Examples( | |
| examples=examples_full, # NOTE: elements must match inputs list! | |
| inputs=[image_block], | |
| outputs=[obj3d_stage1, obj3d], | |
| fn=optimize, | |
| cache_examples=True, | |
| label='Examples (click one of the images below to start)', | |
| examples_per_page=40 | |
| ) | |
| img_run_btn = gr.Button("Generate 3D") | |
| img_guide_text = gr.Markdown(_IMG_USER_GUIDE, visible=True) | |
| # if there is an input image, continue with inference | |
| # else display an error message | |
| img_run_btn.click(check_img_input, inputs=[image_block], queue=False).success(optimize_stage_1, | |
| inputs=[image_block, | |
| preprocess_chk, | |
| elevation_slider], | |
| outputs=[ | |
| obj3d_stage1]).success( | |
| optimize_stage_2, inputs=[image_block, elevation_slider], outputs=[obj3d]) | |
| # demo.launch(enable_queue=True) | |
| demo.queue(max_size=10) # <-- Sets up a queue with default parameters | |
| demo.launch() |