Spaces:
Running
on
A10G
Running
on
A10G
import gradio as gr | |
import os | |
from PIL import Image | |
import subprocess | |
os.system('pip install -e ./simple-knn') | |
os.system('pip install -e ./diff-gaussian-rasterization') | |
# check if there is a picture uploaded or selected | |
def check_img_input(control_image): | |
if control_image is None: | |
raise gr.Error("Please select or upload an input image") | |
def optimize_stage_1(image_block: Image.Image, preprocess_chk: bool, elevation_slider: float): | |
if not os.path.exists('tmp_data'): | |
os.makedirs('tmp_data') | |
if preprocess_chk: | |
# save image to a designated path | |
image_block.save('tmp_data/tmp.png') | |
# preprocess image | |
subprocess.run([f'python process.py tmp_data/tmp.png'], shell=True) | |
else: | |
image_block.save('tmp_data/tmp_rgba.png') | |
# stage 1 | |
subprocess.run([ | |
f'python main.py --config configs/image.yaml input=tmp_data/tmp_rgba.png save_path=tmp mesh_format=glb elevation={elevation_slider} force_cuda_rast=True'], | |
shell=True) | |
return f'logs/tmp_mesh.glb' | |
def optimize_stage_2(elevation_slider: float): | |
# stage 2 | |
subprocess.run([ | |
f'python main2.py --config configs/image.yaml input=tmp_data/tmp_rgba.png save_path=tmp mesh_format=glb elevation={elevation_slider} force_cuda_rast=True'], | |
shell=True) | |
return f'logs/tmp.glb' | |
if __name__ == "__main__": | |
_TITLE = '''DreamGaussian: Generative Gaussian Splatting for Efficient 3D Content Creation''' | |
_DESCRIPTION = ''' | |
<div> | |
<a style="display:inline-block" href="https://dreamgaussian.github.io"><img src='https://img.shields.io/badge/public_website-8A2BE2'></a> | |
<a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/2309.16653"><img src="https://img.shields.io/badge/2306.16928-f9f7f7?logo="></a> | |
<a style="display:inline-block; margin-left: .5em" href='https://github.com/dreamgaussian/dreamgaussian'><img src='https://img.shields.io/github/stars/dreamgaussian/dreamgaussian?style=social'/></a> | |
</div> | |
We present DreamGausssion, a 3D content generation framework that significantly improves the efficiency of 3D content creation. | |
''' | |
_IMG_USER_GUIDE = "Please upload an image in the block above (or choose an example above) and click **Generate 3D**." | |
# load images in 'data' folder as examples | |
example_folder = os.path.join(os.path.dirname(__file__), 'data') | |
example_fns = os.listdir(example_folder) | |
example_fns.sort() | |
examples_full = [os.path.join(example_folder, x) for x in example_fns if x.endswith('.png')] | |
# Compose demo layout & data flow | |
with gr.Blocks(title=_TITLE, theme=gr.themes.Soft()) as demo: | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown('# ' + _TITLE) | |
gr.Markdown(_DESCRIPTION) | |
# Image-to-3D | |
with gr.Row(variant='panel'): | |
with gr.Column(scale=5): | |
image_block = gr.Image(type='pil', image_mode='RGBA', height=290, label='Input image', tool=None) | |
elevation_slider = gr.Slider(-90, 90, value=0, step=1, label='Estimated elevation angle') | |
gr.Markdown( | |
"default to 0 (horizontal), range from [-90, 90]. If you upload a look-down image, try a value like -30") | |
preprocess_chk = gr.Checkbox(True, | |
label='Preprocess image automatically (remove background and recenter object)') | |
gr.Examples( | |
examples=examples_full, # NOTE: elements must match inputs list! | |
inputs=[image_block], | |
outputs=[image_block], | |
cache_examples=False, | |
label='Examples (click one of the images below to start)', | |
examples_per_page=40 | |
) | |
img_run_btn = gr.Button("Generate 3D") | |
img_guide_text = gr.Markdown(_IMG_USER_GUIDE, visible=True) | |
with gr.Column(scale=5): | |
obj3d_stage1 = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model (Stage 1)") | |
obj3d = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model (Final)") | |
# if there is an input image, continue with inference | |
# else display an error message | |
img_run_btn.click(check_img_input, inputs=[image_block], queue=False).success(optimize_stage_1, | |
inputs=[image_block, | |
preprocess_chk, | |
elevation_slider], | |
outputs=[ | |
obj3d_stage1]).success( | |
optimize_stage_2, inputs=[elevation_slider], outputs=[obj3d]) | |
demo.launch(enable_queue=True) |