ConZIC / gen_utils.py
jiaqingj's picture
ConZIC
85a5010
raw
history blame
16.5 kB
import numpy as np
import torch
import torch.nn.functional as F
import random
from utils import get_init_text, update_token_mask
import time
def generate_step(out, gen_idx, temperature=None, top_k=0, sample=False, return_list=True):
""" Generate a word from out[gen_idx]
args:
- out (torch.Tensor): tensor of logits of size batch_size x seq_len x vocab_size
- gen_idx (int): location for which to generate for
- top_k (int): if >0, only sample from the top k most probable words
- sample (Bool): if True, sample from full distribution. Overridden by top_k
"""
logits = out[:, gen_idx]
if temperature is not None:
logits = logits / temperature
if top_k > 0:
kth_vals, kth_idx = logits.topk(top_k, dim=-1)
dist = torch.distributions.categorical.Categorical(logits=kth_vals)
idx = kth_idx.gather(dim=1, index=dist.sample().unsqueeze(-1)).squeeze(-1)
elif sample:
dist = torch.distributions.categorical.Categorical(logits=logits)
idx = dist.sample().squeeze(-1)
else:
idx = torch.argmax(logits, dim=-1)
return idx.tolist() if return_list else idx
def generate_caption_step(out, gen_idx, mask, temperature=None, top_k=100):
""" Generate a word from out[gen_idx]
args:
- out (torch.Tensor): tensor of logits of size (batch_size, seq_len, vocab_size)
- gen_idx (int): location for which to generate for
- mask (torch.Tensor): (1, vocab_size)
- top_k (int): candidate k
"""
logits = out[:, gen_idx]
if temperature is not None:
logits = logits / temperature
probs = F.softmax(logits, dim=-1)
probs *= (mask)
top_k_probs, top_k_ids = probs.topk(top_k, dim=-1)
return top_k_probs, top_k_ids
def sequential_generation(model, clip, tokenizer, image_instance,token_mask, prompt, logger,
max_len=15, top_k=100,temperature=None, alpha=0.7,beta=1,
max_iters=20,batch_size=1, verbose=True):
""" Generate one word at a time, in L->R order """
seed_len = len(prompt.split())+1
batch = get_init_text(tokenizer, prompt, max_len, batch_size)
image_embeds = clip.compute_image_representation_from_image_instance(image_instance)
clip_score_sequence = []
best_clip_score = 0
inp = torch.tensor(batch).to(image_embeds.device)
gen_texts = []
for iter_num in range(max_iters):
for ii in range(max_len):
token_mask = update_token_mask(tokenizer, token_mask, max_len, ii)
for jj in range(batch_size):
inp[jj][seed_len + ii] = tokenizer.mask_token_id
inp_ = inp.clone().detach()
out = model(inp).logits
probs, idxs = generate_caption_step(out, gen_idx=seed_len + ii,mask=token_mask, top_k=top_k, temperature=temperature)
for jj in range(batch_size):
topk_inp = inp_.repeat(top_k, 1)
idxs_ = (idxs[jj] * token_mask[0][idxs[jj]]).long()
topk_inp[:, ii + seed_len] = idxs_
batch_text_list = tokenizer.batch_decode(topk_inp, skip_special_tokens=True)
clip_score, clip_ref = clip.compute_image_text_similarity_via_raw_text(image_embeds, batch_text_list)
final_score = alpha * probs + beta * clip_score
best_clip_id = final_score.argmax()
inp[jj][seed_len + ii] = idxs_[best_clip_id]
current_clip_score = clip_ref[jj][best_clip_id]
clip_score_sequence.append(current_clip_score.cpu().item())
if verbose and np.mod(iter_num + 1, 1) == 0:
for_print = tokenizer.decode(inp[0])
cur_text = tokenizer.decode(inp[0],skip_special_tokens=True)
if best_clip_score < current_clip_score.cpu().item():
best_clip_score = current_clip_score.cpu().item()
best_caption = cur_text
gen_texts.append(cur_text)
logger.info(f"iter {iter_num + 1}, clip score {current_clip_score:.3f}: "+ for_print)
gen_texts.append(best_caption)
clip_score_sequence.append(best_clip_score)
return gen_texts, clip_score_sequence
def shuffle_generation(model, clip, tokenizer,image_instance,token_mask, prompt, logger,
max_len=15, top_k=0,temperature=None, alpha=0.7,beta=1,
max_iters=20,batch_size=1,
verbose=True):
""" Generate one word at a time, in random generation order """
seed_len = len(prompt.split())+1
batch = get_init_text(tokenizer,prompt, max_len, batch_size)
image_embeds = clip.compute_image_representation_from_image_instance(image_instance)
inp = torch.tensor(batch).to(image_embeds.device)
clip_score_sequence = []
best_clip_score = 0
random_lst = list(range(max_len))
random.shuffle(random_lst)
logger.info(f"Order_list:{random_lst}")
gen_texts = []
for iter_num in range(max_iters):
for ii in random_lst:
token_mask = update_token_mask(tokenizer, token_mask, max_len, ii)
for jj in range(batch_size):
inp[jj][seed_len + ii] = tokenizer.mask_token_id
inp_ = inp.clone().detach()
out = model(inp).logits
probs, idxs = generate_caption_step(out, gen_idx=seed_len + ii,mask=token_mask, top_k=top_k, temperature=temperature)
for jj in range(batch_size):
topk_inp = inp_.repeat(top_k, 1)
topk_inp[:, ii + seed_len] = (idxs[jj] * token_mask[0][idxs[jj]]).long()
batch_text_list = tokenizer.batch_decode(topk_inp, skip_special_tokens=True)
clip_score,clip_ref = clip.compute_image_text_similarity_via_raw_text(image_embeds, batch_text_list)
final_score = alpha * probs + beta * clip_score
best_clip_id = final_score.argmax()
inp[jj][seed_len + ii] = idxs[jj][best_clip_id]
current_clip_score = clip_ref[jj][best_clip_id]
clip_score_sequence.append(current_clip_score.cpu().item())
if verbose and np.mod(iter_num + 1, 1) == 0:
for_print = tokenizer.decode(inp[0])
cur_text = tokenizer.decode(inp[0],skip_special_tokens=True)
gen_texts.append(cur_text)
if best_clip_score < current_clip_score.cpu().item():
best_clip_score = current_clip_score.cpu().item()
best_caption = cur_text
logger.info(f"iter {iter_num + 1}, clip score {current_clip_score:.3f}: "+for_print)
gen_texts.append(best_caption)
clip_score_sequence.append(best_clip_score)
return gen_texts, clip_score_sequence
def span_generation(model, clip, tokenizer,image_instance,token_mask, prompt, logger,
max_len=15, top_k=0,temperature=None, alpha=0.7,beta=1,
max_iters=20,batch_size=1,verbose=True):
""" Generate multiple words at a time (span generation), in L->R order """
seed_len = len(prompt.split())+1
span_len = 2
batch = get_init_text(tokenizer,prompt, max_len, batch_size)
image_embeds = clip.compute_image_representation_from_image_instance(image_instance)
clip_score_sequence = []
best_clip_score = 0
inp = torch.tensor(batch).to(image_embeds.device)
gen_texts = []
for iter_num in range(max_iters):
for span_start in range(0,max_len,span_len):
span_end = min(span_start+span_len,max_len)
for jj in range(batch_size):
inp[jj][seed_len + span_start: seed_len + span_end] = tokenizer.mask_token_id
out = model(inp).logits
for ii in range(span_start,span_end):
token_mask = update_token_mask(tokenizer, token_mask, max_len, ii)
inp_ = inp.clone().detach()
probs, idxs = generate_caption_step(out, gen_idx=seed_len + ii, mask=token_mask, top_k=top_k,
temperature=temperature)
for jj in range(batch_size):
topk_inp = inp_.repeat(top_k, 1)
idxs_ = (idxs[jj] * token_mask[0][idxs[jj]]).long()
topk_inp[:, ii + seed_len] = idxs_
batch_text_list = tokenizer.batch_decode(topk_inp, skip_special_tokens=True)
clip_score, clip_ref = clip.compute_image_text_similarity_via_raw_text(image_embeds, batch_text_list)
final_score = alpha * probs + beta * clip_score
best_clip_id = final_score.argmax()
inp[jj][seed_len + ii] = idxs_[best_clip_id]
current_clip_score = clip_ref[jj][best_clip_id]
clip_score_sequence.append(current_clip_score.cpu().item())
if verbose and np.mod(iter_num + 1, 1) == 0:
for_print = tokenizer.decode(inp[0])
cur_text = tokenizer.decode(inp[0],skip_special_tokens=True)
if best_clip_score < current_clip_score.cpu().item():
best_clip_score = current_clip_score.cpu().item()
best_caption = cur_text
gen_texts.append(cur_text)
logger.info(f"iter {iter_num + 1}, clip score {current_clip_score:.3f}: "+ for_print)
gen_texts.append(best_caption)
clip_score_sequence.append(best_clip_score)
return gen_texts, clip_score_sequence
def random_generation(model, clip, tokenizer,image_instance,token_mask, prompt, logger,
max_len=15, top_k=0, temperature=None,alpha=0.7,beta=2,
max_iters=300,print_every=10,batch_size=1,
verbose=True):
""" Generate for one random position at a timestep"""
seed_len = len(prompt.split())+1
batch = get_init_text(tokenizer, prompt, max_len, batch_size)
image_embeds = clip.compute_image_representation_from_image_instance(image_instance)
clip_score_sequence = []
best_clip_score = 0
inp = torch.tensor(batch).to(image_embeds.device)
gen_texts = []
for ii in range(max_iters):
kk = np.random.randint(0, max_len)
token_mask = update_token_mask(tokenizer, token_mask, max_len, kk)
for jj in range(batch_size):
inp[jj][seed_len + kk] = tokenizer.mask_token_id
inp_ = inp.clone().detach()
out = model(inp).logits
probs, idxs = generate_caption_step(out,gen_idx=seed_len + kk,mask=token_mask, top_k=top_k, temperature=temperature)
for jj in range(batch_size):
topk_inp = inp_.repeat(top_k, 1)
topk_inp[:, kk + seed_len] = (idxs[jj] * token_mask[0][idxs[jj]]).long()
batch_text_list = tokenizer.batch_decode(topk_inp, skip_special_tokens=True)
clip_score, clip_ref = clip.compute_image_text_similarity_via_raw_text(image_embeds, batch_text_list)
final_score = alpha * probs + beta * clip_score
best_clip_id = final_score.argmax()
inp[jj][seed_len + kk] = idxs[jj][best_clip_id]
current_clip_score = clip_ref[jj][best_clip_id]
clip_score_sequence.append(current_clip_score.cpu().item())
if best_clip_score < current_clip_score.cpu().item():
best_clip_score = current_clip_score.cpu().item()
best_caption = tokenizer.decode(inp[0], skip_special_tokens=True)
if verbose and np.mod(ii + 1, print_every) == 0:
for_print = tokenizer.decode(inp[0])
logger.info(f"iter {ii + 1}, clip score {current_clip_score:.3f}: "+for_print)
cur_text = tokenizer.decode(inp[0], skip_special_tokens=True)
gen_texts.append(cur_text)
gen_texts.append(best_caption)
clip_score_sequence.append(best_clip_score)
return gen_texts, clip_score_sequence
def parallel_generation(model, clip, tokenizer,image_instance,token_mask, prompt, logger,
max_len=15, top_k=0, temperature=None, alpha=0.1, beta=1,
max_iters=300,batch_size=1,print_every=1, verbose=True):
""" Generate for all positions at a time step """
seed_len = len(prompt.split())+1
batch = get_init_text(tokenizer,prompt, max_len, batch_size)
image_embeds = clip.compute_image_representation_from_image_instance(image_instance)
clip_score_sequence = []
inp = torch.tensor(batch).to(image_embeds.device)
gen_texts = []
best_clip_score = 0
for ii in range(max_iters):
inp_ = inp.clone().detach()
out = model(inp).logits
for kk in range(max_len):
probs, idxs = generate_caption_step(out, gen_idx=seed_len + kk,mask=token_mask, top_k=top_k, temperature=temperature)
for jj in range(batch_size):
topk_inp = inp_.repeat(top_k, 1)
topk_inp[:, ii + seed_len] = (idxs[jj] * token_mask[0][idxs[jj]]).long()
batch_text_list = tokenizer.batch_decode(topk_inp, skip_special_tokens=True)
clip_score,clip_ref = clip.compute_image_text_similarity_via_raw_text(image_embeds, batch_text_list)
final_score = alpha * probs + beta * clip_score
best_clip_id = final_score.argmax()
inp[jj][seed_len + kk] = idxs[jj][best_clip_id]
current_clip_score = clip_ref[jj][best_clip_id]
clip_score_sequence.append(current_clip_score.cpu().item())
if verbose and np.mod(ii, 1) == 0:
logger.info(f"iter{ii + 1}, clip score {current_clip_score:.3f}: " + tokenizer.decode(inp[0]))
cur_text = tokenizer.decode(inp[0], skip_special_tokens=True)
if best_clip_score < current_clip_score.cpu().item():
best_clip_score = current_clip_score.cpu().item()
best_caption = cur_text
gen_texts.append(cur_text)
gen_texts.append(best_caption)
clip_score_sequence.append(best_clip_score)
return gen_texts, clip_score_sequence
def generate_caption(model, clip, tokenizer,image_instance,token_mask,logger,
prompt="", batch_size=1, max_len=15,
top_k=100, temperature=1.0, max_iter=500,alpha=0.7,beta=1,
generate_order="sequential"):
# main generation functions to call
start_time = time.time()
if generate_order=="sequential":
generate_texts, clip_scores = sequential_generation(model, clip, tokenizer, image_instance, token_mask, prompt, logger,
batch_size=batch_size, max_len=max_len, top_k=top_k,
alpha=alpha,beta=beta,temperature=temperature,
max_iters=max_iter)
elif generate_order=="shuffle":
# max_iter = 15
generate_texts, clip_scores = shuffle_generation(model, clip, tokenizer,image_instance,token_mask,prompt, logger,
batch_size=batch_size, max_len=max_len, top_k=top_k,
alpha=alpha,beta=beta,temperature=temperature,max_iters=max_iter)
elif generate_order=="random":
max_iter *= max_len
print_every = max_len
generate_texts, clip_scores = random_generation(model, clip, tokenizer,image_instance,token_mask,prompt,logger,
max_len=max_len, top_k=top_k,alpha=alpha,beta=beta,print_every=print_every,
temperature=temperature, max_iters=max_iter,verbose=True)
elif generate_order=="span":
max_iter = max_iter
generate_texts, clip_scores = span_generation(model, clip, tokenizer, image_instance, token_mask, prompt, logger,
batch_size=batch_size, max_len=max_len, top_k=top_k,
alpha=alpha,beta=beta,temperature=temperature, max_iters=max_iter)
elif generate_order=="parallel":
generate_texts, clip_scores = parallel_generation(model, clip, tokenizer,image_instance,token_mask,prompt, logger,
max_len=max_len, temperature=temperature,top_k=top_k,alpha=alpha,beta=beta,
max_iters=max_iter,verbose=True)
logger.info("Finished in %.3fs" % (time.time() - start_time))
logger.info(f"final caption: {generate_texts[-2]}")
logger.info(f"best caption: {generate_texts[-1]}")
return generate_texts, clip_scores