Spaces:
Sleeping
Sleeping
import itertools | |
import json | |
import multiprocessing | |
import numpy as np | |
from typing import Dict | |
from datasets import load_dataset | |
from .testing_util import run_test | |
DATASET = "codeparrot/apps" | |
TIMEOUT = 10 | |
def _temp_run(sample, generation, debug, result): | |
result.append(run_test(sample, test=generation, debug=debug)) | |
def check_correctness(sample, generation, timeout, debug=True): | |
"""Check correctness of code generation with a global timeout. | |
The global timeout is to catch some extreme/rare cases not handled by the timeouts | |
inside `run_test`""" | |
manager = multiprocessing.Manager() | |
result = manager.list() | |
p = multiprocessing.Process(target=_temp_run, args=(sample, generation, debug, result)) | |
p.start() | |
p.join(timeout=timeout + 1) | |
if p.is_alive(): | |
p.kill() | |
if not result: | |
in_outs = json.loads(sample["input_output"]) | |
# consider that all tests failed | |
result = [[-1 for i in range(len(in_outs["inputs"]))]] | |
if debug: | |
print(f"global timeout") | |
return result[0] | |
def evaluate_generations(generations: list, indices: list = [], level: str = "all", debug: bool = False): | |
"""We take the list of code generations and try to compile them | |
and the run their corresponding unit tests which are retrieved from the APPS dataset. | |
Args: | |
generations: list of code generations (same order as samples in APPS dataset) | |
indices: list of indicies of problems to evaluate, if empty, evaluate all problems | |
level: difficulty level used in the generation, can be "all", "introductory", "interview" or "competition" | |
Returns: | |
results: dictionary of results, key is the problem index, value is a list of results for each generation | |
[-2] = compile error, [-1] = runtime error [False] = failed test case [True] = passed test case | |
""" | |
# generations are code generations in the same order of the dataset | |
apps_eval = load_dataset(DATASET, level, split="train") | |
if indices is None: | |
indices = range(len(generations)) | |
results = {} | |
for index, generation in zip(indices, generations): | |
# code generations for problem (index) | |
problem_generations = generation | |
# get corresponding samples from APPS dataset | |
sample = apps_eval[index] | |
res = [] | |
# loop over the generations | |
for o_idx, o in enumerate(problem_generations): | |
curr_res = [-2] | |
try: | |
curr_res = check_correctness(sample, o, timeout=TIMEOUT, debug=debug) | |
if debug: | |
print(f"\nSuccessful compilation of task {index}!") | |
fixed = [] | |
for e in curr_res: | |
if isinstance(e, np.ndarray): | |
e = e.item(0) | |
if isinstance(e, np.bool_): | |
e = bool(e) | |
fixed.append(e) | |
curr_res = fixed | |
if not np.all(curr_res): | |
if debug: | |
print(f"Results were not True for all test cases") | |
except Exception as e: | |
if debug: | |
print(f"Compilation failed, test framework exception = {repr(e)}\n") | |
break | |
finally: | |
assert isinstance(curr_res, list) | |
res.append(curr_res) | |
results[index] = res | |
return results | |
def estimate_pass_at_k(num_samples, num_correct, k): | |
"""Estimates pass@k of each problem and returns them in an array.""" | |
def estimator(n: int, c: int, k: int) -> float: | |
"""Calculates 1 - comb(n - c, k) / comb(n, k).""" | |
if n - c < k: | |
return 1.0 | |
return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1, n + 1)) | |
if isinstance(num_samples, int): | |
num_samples_it = itertools.repeat(num_samples, len(num_correct)) | |
else: | |
assert len(num_samples) == len(num_correct) | |
num_samples_it = iter(num_samples) | |
return np.array([estimator(int(n), int(c), k) for n, c in zip(num_samples_it, num_correct)]) | |
def get_results(results: Dict[int, list], count_errors: bool = False, k_list: list = [1, 10, 100]): | |
""" | |
Given the results evaluated against the testcases we output some statistics. | |
For single generations: | |
>>> example_results = {0: [[-2]], 1: [[False,False]], 2: [[True,True]], 3: [[False,True,False,True]], 4: [[-1,-1]]} | |
>>> get_results(example_results, count_errors=True) | |
Computing accuracy metrics... | |
number of compile errors = 1 avg = 0.2 | |
number of runtime errors = 1 avg = 0.2 | |
number of problems evaluated = 5 | |
Average Accuracy : 0.3 | |
Strict Accuracy : 0.2 | |
{'avg_accuracy': 0.3, 'strict_accuracy': 0.2, 'pass_at_k': None} | |
For multiple generations: | |
>>> example_results = {0: [[-2], [True, True, True]], 1: [[-1,-1, -1], [True, False, True]]} | |
>>> get_results(example_results, k_list=[1, 2]) | |
Computing pass@k metric for multiple generations... | |
{'pass@1': 0.25, 'pass@2': 0.5} | |
{'avg_accuracy': None, 'strict_accuracy': None, 'pass_at_k': {'pass@1': 0.25, 'pass@2': 0.5}} | |
""" | |
metrics = {"avg_accuracy": None, "strict_accuracy": None, "pass_at_k": None} | |
if len(list(results.values())[0]) == 1: | |
# for single generations we compute average accuracy and stric accuracy: original APPS metrics | |
print("Computing accuracy metrics...") | |
res = [] | |
per_prob_res = [] | |
all_correct = [] | |
for index in results: | |
problem_results = np.asarray(results[index]) | |
res.extend(problem_results) | |
per_prob_res.append(np.mean(problem_results > 0)) | |
all_correct.append(np.all(problem_results > 0)) | |
# we count campilation and runtime errors once per pronlem | |
compile_errors = len([e for e in res if -2 in e]) | |
runtime_errors = len([e for e in res if -1 in e]) | |
total_testcases = len(res) | |
if count_errors: | |
print(f"number of compile errors = {compile_errors} avg = {compile_errors / total_testcases}") | |
print(f"number of runtime errors = {runtime_errors} avg = {runtime_errors / total_testcases}") | |
print(f"number of problems evaluated = {total_testcases}") | |
print(f"Average Accuracy : {np.mean(per_prob_res)}") | |
print(f"Strict Accuracy : {np.mean(all_correct)}") | |
metrics["avg_accuracy"] = np.mean(per_prob_res) | |
metrics["strict_accuracy"] = np.mean(all_correct) | |
else: | |
# for multiple generations we use pass@k metric used in the HumanEval benchmark | |
# we use strict accuracy, a generation is valid if it has to pass all the tests | |
print("Computing pass@k metric for multiple generations...") | |
# total is list with nb generations per task (task=index) | |
# correct is number of generations that passed all tests per task | |
total = [] | |
correct = [] | |
for index in results: | |
all_correct = [] | |
for generation in results[index]: | |
gen = np.array(generation) | |
all_correct.append(np.all(gen>0)) | |
total.append(len(all_correct)) | |
correct.append(sum(all_correct)) | |
total = np.array(total) | |
correct = np.array(correct) | |
ks = k_list | |
pass_at_k = {f"pass@{k}": estimate_pass_at_k(total, correct, k).mean() for k in ks if (total >= k).all()} | |
print(pass_at_k) | |
metrics["pass_at_k"] = pass_at_k | |
return metrics | |
def compute_metrics(generations, indices=None, level="all", k_list=[1, 10, 100], count_errors=True, debug=False): | |
"""Return metrics for the given generations. | |
Args: | |
generations: list of code generations for each problem (each generation is a list of generations) | |
indices: list of indices of problems (if None, generations are all problems) | |
k_list: list of k values to compute pass@k when using multiple generations | |
count_errors: whether to count compilation and runtime errors when using single generations | |
level: difficulty level in APPS dataset that was used for the given generations (from: "all", "introductory", "interview", "competition") | |
Returns: | |
metrics: dict of metrics | |
Examples: | |
>>> import json | |
>>> # lists of solutions to the two first APPS problems (note not all solutions pass all tests) | |
>>> solution_sample1 = json.load(open("test_examples/solutions_problem_1.json", "r")) | |
>>> solution_sample2 = json.load(open("test_examples/solutions_problem_2.json", "r")) | |
>>> single_solutions = [solution_sample1[:1], solution_sample2[:1]] | |
>>> compute_metrics(single_solutions, level="all") | |
Computing accuracy metrics... | |
number of compile errors = 0 avg = 0.0 | |
number of runtime errors = 0 avg = 0.0 | |
number of problems evaluated = 2 | |
Average Accuracy : 1.0 | |
Strict Accuracy : 1.0 | |
{'avg_accuracy': 1.0, 'strict_accuracy': 1.0, 'pass_at_k': None} | |
>>> multiple_solutions = [solution_sample1[:3], solution_sample2[:3]] | |
>>> compute_metrics(multiple_solutions, level="all", k_list=[1, 2, 3]) | |
Computing pass@k metric for multiple generations... | |
{'pass@1': 1.0, 'pass@2': 1.0, 'pass@3': 1.0} | |
{'avg_accuracy': None, 'strict_accuracy': None, 'pass_at_k': {'pass@1': 1.0, 'pass@2': 1.0, 'pass@3': 1.0}} | |
""" | |
results = evaluate_generations(generations, indices=indices, level=level, debug=debug) | |
metrics = get_results(results, count_errors=count_errors, k_list=k_list) | |
return metrics | |
# import doctest | |
# doctest.testmod() | |