jhtonyKoo commited on
Commit
9d51225
·
1 Parent(s): ddb80f4

Delete inference/style_transfer_hf.py

Browse files
Files changed (1) hide show
  1. inference/style_transfer_hf.py +0 -390
inference/style_transfer_hf.py DELETED
@@ -1,390 +0,0 @@
1
- """
2
- Inference code of music style transfer
3
- of the work "Music Mixing Style Transfer: A Contrastive Learning Approach to Disentangle Audio Effects"
4
- Process : converts the mixing style of the input music recording to that of the refernce music.
5
- files inside the target directory should be organized as follow
6
- "path_to_data_directory"/"song_name_#1"/input.wav
7
- "path_to_data_directory"/"song_name_#1"/reference.wav
8
- ...
9
- "path_to_data_directory"/"song_name_#n"/input.wav
10
- "path_to_data_directory"/"song_name_#n"/reference.wav
11
- where the 'input' and 'reference' should share the same names.
12
- """
13
- import numpy as np
14
- from glob import glob
15
- import os
16
- import torch
17
-
18
- import sys
19
- currentdir = os.path.dirname(os.path.realpath(__file__))
20
- sys.path.append(os.path.join(os.path.dirname(currentdir), "mixing_style_transfer"))
21
- from networks import FXencoder, TCNModel
22
- from data_loader import *
23
-
24
-
25
-
26
- class Mixing_Style_Transfer_Inference:
27
- def __init__(self, args, trained_w_ddp=True):
28
- if args.inference_device!='cpu' and torch.cuda.is_available():
29
- self.device = torch.device("cuda:0")
30
- else:
31
- self.device = torch.device("cpu")
32
-
33
- # inference computational hyperparameters
34
- self.segment_length = 2**19
35
- self.batch_size = 1
36
- self.sample_rate = 44100 # sampling rate should be 44100
37
- self.time_in_seconds = int(self.segment_length // self.sample_rate)
38
-
39
- # directory configuration
40
- self.output_dir = "./output_mix_dir/"
41
-
42
- # checkpoint weight paths
43
- currentdir = os.path.dirname(os.path.realpath(__file__))
44
- ckpt_path_enc = os.path.join(os.path.dirname(currentdir), 'weights', 'FXencoder_ps.pt')
45
- ckpt_path_conv = os.path.join(os.path.dirname(currentdir), 'weights', 'MixFXcloner_ps.pt')
46
- ckpt_path_mastering = os.path.join(os.path.dirname(currentdir), 'weights', 'MasterFXcloner_ps.pt')
47
- norm_feature_path = os.path.join(os.path.dirname(currentdir), 'weights', 'musdb18_fxfeatures_eqcompimagegain.npy')
48
-
49
- # load network configurations
50
- with open(os.path.join(currentdir, 'configs.yaml'), 'r') as f:
51
- configs = yaml.full_load(f)
52
- cfg_encoder = configs['Effects_Encoder']['default']
53
- cfg_converter = configs['TCN']['default']
54
-
55
- # load model and its checkpoint weights
56
- self.models = {}
57
- self.models['effects_encoder'] = FXencoder(cfg_encoder).to(self.device)
58
- self.models['mixing_converter'] = TCNModel(nparams=cfg_converter["condition_dimension"], \
59
- ninputs=2, \
60
- noutputs=2, \
61
- nblocks=cfg_converter["nblocks"], \
62
- dilation_growth=cfg_converter["dilation_growth"], \
63
- kernel_size=cfg_converter["kernel_size"], \
64
- channel_width=cfg_converter["channel_width"], \
65
- stack_size=cfg_converter["stack_size"], \
66
- cond_dim=cfg_converter["condition_dimension"], \
67
- causal=cfg_converter["causal"]).to(self.device)
68
-
69
- ckpt_paths = {'effects_encoder' : ckpt_path_enc, \
70
- 'mixing_converter' : ckpt_path_conv}
71
- # reload saved model weights
72
- ddp = trained_w_ddp
73
- self.reload_weights(ckpt_paths, ddp=ddp)
74
-
75
- ''' check stem-wise result '''
76
- if not self.args.do_not_separate:
77
- os.environ['MKL_THREADING_LAYER'] = 'GNU'
78
- separate_file_names = [args.input_file_name, args.reference_file_name]
79
- if self.args.interpolation:
80
- separate_file_names.append(args.reference_file_name_2interpolate)
81
- for cur_idx, cur_inf_dir in enumerate(sorted(glob(f"{args.target_dir}*/"))):
82
- for cur_file_name in separate_file_names:
83
- cur_sep_file_path = os.path.join(cur_inf_dir, cur_file_name+'.wav')
84
- cur_sep_output_dir = os.path.join(cur_inf_dir, args.stem_level_directory_name)
85
- if os.path.exists(os.path.join(cur_sep_output_dir, self.args.separation_model, cur_file_name, 'drums.wav')):
86
- print(f'\talready separated current file : {cur_sep_file_path}')
87
- else:
88
- cur_cmd_line = f"demucs {cur_sep_file_path} -n {self.args.separation_model} -d {self.args.separation_device} -o {cur_sep_output_dir}"
89
- os.system(cur_cmd_line)
90
-
91
-
92
- # reload model weights from the target checkpoint path
93
- def reload_weights(self, ckpt_paths, ddp=True):
94
- for cur_model_name in self.models.keys():
95
- checkpoint = torch.load(ckpt_paths[cur_model_name], map_location=self.device)
96
-
97
- from collections import OrderedDict
98
- new_state_dict = OrderedDict()
99
- for k, v in checkpoint["model"].items():
100
- # remove `module.` if the model was trained with DDP
101
- name = k[7:] if ddp else k
102
- new_state_dict[name] = v
103
-
104
- # load params
105
- self.models[cur_model_name].load_state_dict(new_state_dict)
106
-
107
- print(f"---reloaded checkpoint weights : {cur_model_name} ---")
108
-
109
-
110
- # Inference whole song
111
- def inference(self, ):
112
- print("\n======= Start to inference music mixing style transfer =======")
113
- # normalized input
114
- output_name_tag = 'output' if self.args.normalize_input else 'output_notnormed'
115
-
116
- for step, (input_stems, reference_stems, dir_name) in enumerate(self.data_loader):
117
- print(f"---inference file name : {dir_name[0]}---")
118
- cur_out_dir = dir_name[0].replace(self.target_dir, self.output_dir)
119
- os.makedirs(cur_out_dir, exist_ok=True)
120
- ''' stem-level inference '''
121
- inst_outputs = []
122
- for cur_inst_idx, cur_inst_name in enumerate(self.args.instruments):
123
- print(f'\t{cur_inst_name}...')
124
- ''' segmentize whole songs into batch '''
125
- if len(input_stems[0][cur_inst_idx][0]) > self.args.segment_length:
126
- cur_inst_input_stem = self.batchwise_segmentization(input_stems[0][cur_inst_idx], \
127
- dir_name[0], \
128
- segment_length=self.args.segment_length, \
129
- discard_last=False)
130
- else:
131
- cur_inst_input_stem = [input_stems[:, cur_inst_idx]]
132
- if len(reference_stems[0][cur_inst_idx][0]) > self.args.segment_length*2:
133
- cur_inst_reference_stem = self.batchwise_segmentization(reference_stems[0][cur_inst_idx], \
134
- dir_name[0], \
135
- segment_length=self.args.segment_length_ref, \
136
- discard_last=False)
137
- else:
138
- cur_inst_reference_stem = [reference_stems[:, cur_inst_idx]]
139
-
140
- ''' inference '''
141
- # first extract reference style embedding
142
- infered_ref_data_list = []
143
- for cur_ref_data in cur_inst_reference_stem:
144
- cur_ref_data = cur_ref_data.to(self.device)
145
- # Effects Encoder inference
146
- with torch.no_grad():
147
- self.models["effects_encoder"].eval()
148
- reference_feature = self.models["effects_encoder"](cur_ref_data)
149
- infered_ref_data_list.append(reference_feature)
150
- # compute average value from the extracted exbeddings
151
- infered_ref_data = torch.stack(infered_ref_data_list)
152
- infered_ref_data_avg = torch.mean(infered_ref_data.reshape(infered_ref_data.shape[0]*infered_ref_data.shape[1], infered_ref_data.shape[2]), axis=0)
153
-
154
- # mixing style converter
155
- infered_data_list = []
156
- for cur_data in cur_inst_input_stem:
157
- cur_data = cur_data.to(self.device)
158
- with torch.no_grad():
159
- self.models["mixing_converter"].eval()
160
- infered_data = self.models["mixing_converter"](cur_data, infered_ref_data_avg.unsqueeze(0))
161
- infered_data_list.append(infered_data.cpu().detach())
162
-
163
- # combine back to whole song
164
- for cur_idx, cur_batch_infered_data in enumerate(infered_data_list):
165
- cur_infered_data_sequential = torch.cat(torch.unbind(cur_batch_infered_data, dim=0), dim=-1)
166
- fin_data_out = cur_infered_data_sequential if cur_idx==0 else torch.cat((fin_data_out, cur_infered_data_sequential), dim=-1)
167
- # final output of current instrument
168
- fin_data_out_inst = fin_data_out[:, :input_stems[0][cur_inst_idx].shape[-1]].numpy()
169
-
170
- inst_outputs.append(fin_data_out_inst)
171
- # save output of each instrument
172
- if self.args.save_each_inst:
173
- sf.write(os.path.join(cur_out_dir, f"{cur_inst_name}_{output_name_tag}.wav"), fin_data_out_inst.transpose(-1, -2), self.args.sample_rate, 'PCM_16')
174
- # remix
175
- fin_data_out_mix = sum(inst_outputs)
176
- sf.write(os.path.join(cur_out_dir, f"mixture_{output_name_tag}.wav"), fin_data_out_mix.transpose(-1, -2), self.args.sample_rate, 'PCM_16')
177
-
178
-
179
- # Inference whole song
180
- def inference_interpolation(self, ):
181
- print("\n======= Start to inference interpolation examples =======")
182
- # normalized input
183
- output_name_tag = 'output_interpolation' if self.args.normalize_input else 'output_notnormed_interpolation'
184
-
185
- for step, (input_stems, reference_stems_A, reference_stems_B, dir_name) in enumerate(self.data_loader):
186
- print(f"---inference file name : {dir_name[0]}---")
187
- cur_out_dir = dir_name[0].replace(self.target_dir, self.output_dir)
188
- os.makedirs(cur_out_dir, exist_ok=True)
189
- ''' stem-level inference '''
190
- inst_outputs = []
191
- for cur_inst_idx, cur_inst_name in enumerate(self.args.instruments):
192
- print(f'\t{cur_inst_name}...')
193
- ''' segmentize whole song '''
194
- # segmentize input according to number of interpolating segments
195
- interpolate_segment_length = input_stems[0][cur_inst_idx].shape[1] // self.args.interpolate_segments + 1
196
- cur_inst_input_stem = self.batchwise_segmentization(input_stems[0][cur_inst_idx], \
197
- dir_name[0], \
198
- segment_length=interpolate_segment_length, \
199
- discard_last=False)
200
- # batchwise segmentize 2 reference tracks
201
- if len(reference_stems_A[0][cur_inst_idx][0]) > self.args.segment_length_ref:
202
- cur_inst_reference_stem_A = self.batchwise_segmentization(reference_stems_A[0][cur_inst_idx], \
203
- dir_name[0], \
204
- segment_length=self.args.segment_length_ref, \
205
- discard_last=False)
206
- else:
207
- cur_inst_reference_stem_A = [reference_stems_A[:, cur_inst_idx]]
208
- if len(reference_stems_B[0][cur_inst_idx][0]) > self.args.segment_length_ref:
209
- cur_inst_reference_stem_B = self.batchwise_segmentization(reference_stems_B[0][cur_inst_idx], \
210
- dir_name[0], \
211
- segment_length=self.args.segment_length, \
212
- discard_last=False)
213
- else:
214
- cur_inst_reference_stem_B = [reference_stems_B[:, cur_inst_idx]]
215
-
216
- ''' inference '''
217
- # first extract reference style embeddings
218
- # reference A
219
- infered_ref_data_list = []
220
- for cur_ref_data in cur_inst_reference_stem_A:
221
- cur_ref_data = cur_ref_data.to(self.device)
222
- # Effects Encoder inference
223
- with torch.no_grad():
224
- self.models["effects_encoder"].eval()
225
- reference_feature = self.models["effects_encoder"](cur_ref_data)
226
- infered_ref_data_list.append(reference_feature)
227
- # compute average value from the extracted exbeddings
228
- infered_ref_data = torch.stack(infered_ref_data_list)
229
- infered_ref_data_avg_A = torch.mean(infered_ref_data.reshape(infered_ref_data.shape[0]*infered_ref_data.shape[1], infered_ref_data.shape[2]), axis=0)
230
-
231
- # reference B
232
- infered_ref_data_list = []
233
- for cur_ref_data in cur_inst_reference_stem_B:
234
- cur_ref_data = cur_ref_data.to(self.device)
235
- # Effects Encoder inference
236
- with torch.no_grad():
237
- self.models["effects_encoder"].eval()
238
- reference_feature = self.models["effects_encoder"](cur_ref_data)
239
- infered_ref_data_list.append(reference_feature)
240
- # compute average value from the extracted exbeddings
241
- infered_ref_data = torch.stack(infered_ref_data_list)
242
- infered_ref_data_avg_B = torch.mean(infered_ref_data.reshape(infered_ref_data.shape[0]*infered_ref_data.shape[1], infered_ref_data.shape[2]), axis=0)
243
-
244
- # mixing style converter
245
- infered_data_list = []
246
- for cur_idx, cur_data in enumerate(cur_inst_input_stem):
247
- cur_data = cur_data.to(self.device)
248
- # perform linear interpolation on embedding space
249
- cur_weight = (self.args.interpolate_segments-1-cur_idx) / (self.args.interpolate_segments-1)
250
- cur_ref_emb = cur_weight * infered_ref_data_avg_A + (1-cur_weight) * infered_ref_data_avg_B
251
- with torch.no_grad():
252
- self.models["mixing_converter"].eval()
253
- infered_data = self.models["mixing_converter"](cur_data, cur_ref_emb.unsqueeze(0))
254
- infered_data_list.append(infered_data.cpu().detach())
255
-
256
- # combine back to whole song
257
- for cur_idx, cur_batch_infered_data in enumerate(infered_data_list):
258
- cur_infered_data_sequential = torch.cat(torch.unbind(cur_batch_infered_data, dim=0), dim=-1)
259
- fin_data_out = cur_infered_data_sequential if cur_idx==0 else torch.cat((fin_data_out, cur_infered_data_sequential), dim=-1)
260
- # final output of current instrument
261
- fin_data_out_inst = fin_data_out[:, :input_stems[0][cur_inst_idx].shape[-1]].numpy()
262
- inst_outputs.append(fin_data_out_inst)
263
-
264
- # save output of each instrument
265
- if self.args.save_each_inst:
266
- sf.write(os.path.join(cur_out_dir, f"{cur_inst_name}_{output_name_tag}.wav"), fin_data_out_inst.transpose(-1, -2), self.args.sample_rate, 'PCM_16')
267
- # remix
268
- fin_data_out_mix = sum(inst_outputs)
269
- sf.write(os.path.join(cur_out_dir, f"mixture_{output_name_tag}.wav"), fin_data_out_mix.transpose(-1, -2), self.args.sample_rate, 'PCM_16')
270
-
271
-
272
- # function that segmentize an entire song into batch
273
- def batchwise_segmentization(self, target_song, song_name, segment_length, discard_last=False):
274
- assert target_song.shape[-1] >= self.args.segment_length, \
275
- f"Error : Insufficient duration!\n\t \
276
- Target song's length is shorter than segment length.\n\t \
277
- Song name : {song_name}\n\t \
278
- Consider changing the 'segment_length' or song with sufficient duration"
279
-
280
- # discard restovers (last segment)
281
- if discard_last:
282
- target_length = target_song.shape[-1] - target_song.shape[-1] % segment_length
283
- target_song = target_song[:, :target_length]
284
- # pad last segment
285
- else:
286
- pad_length = segment_length - target_song.shape[-1] % segment_length
287
- target_song = torch.cat((target_song, torch.zeros(2, pad_length)), axis=-1)
288
-
289
- # segmentize according to the given segment_length
290
- whole_batch_data = []
291
- batch_wise_data = []
292
- for cur_segment_idx in range(target_song.shape[-1]//segment_length):
293
- batch_wise_data.append(target_song[..., cur_segment_idx*segment_length:(cur_segment_idx+1)*segment_length])
294
- if len(batch_wise_data)==self.args.batch_size:
295
- whole_batch_data.append(torch.stack(batch_wise_data, dim=0))
296
- batch_wise_data = []
297
- if batch_wise_data:
298
- whole_batch_data.append(torch.stack(batch_wise_data, dim=0))
299
-
300
- return whole_batch_data
301
-
302
-
303
- # save current inference arguments
304
- def save_args(self, params):
305
- info = '\n[args]\n'
306
- for sub_args in parser._action_groups:
307
- if sub_args.title in ['positional arguments', 'optional arguments', 'options']:
308
- continue
309
- size_sub = len(sub_args._group_actions)
310
- info += f' {sub_args.title} ({size_sub})\n'
311
- for i, arg in enumerate(sub_args._group_actions):
312
- prefix = '-'
313
- info += f' {prefix} {arg.dest:20s}: {getattr(params, arg.dest)}\n'
314
- info += '\n'
315
-
316
- os.makedirs(self.output_dir, exist_ok=True)
317
- record_path = f"{self.output_dir}style_transfer_inference_configurations.txt"
318
- f = open(record_path, 'w')
319
- np.savetxt(f, [info], delimiter=" ", fmt="%s")
320
- f.close()
321
-
322
-
323
-
324
- if __name__ == '__main__':
325
- os.environ['MASTER_ADDR'] = '127.0.0.1'
326
- os.environ["CUDA_VISIBLE_DEVICES"] = '0'
327
- os.environ['MASTER_PORT'] = '8888'
328
-
329
- def str2bool(v):
330
- if v.lower() in ('yes', 'true', 't', 'y', '1'):
331
- return True
332
- elif v.lower() in ('no', 'false', 'f', 'n', '0'):
333
- return False
334
- else:
335
- raise argparse.ArgumentTypeError('Boolean value expected.')
336
-
337
- ''' Configurations for music mixing style transfer '''
338
-
339
- import argparse
340
- import yaml
341
- parser = argparse.ArgumentParser()
342
-
343
- directory_args = parser.add_argument_group('Directory args')
344
- # directory paths
345
- directory_args.add_argument('--target_dir', type=str, default='./samples/style_transfer/')
346
- directory_args.add_argument('--output_dir', type=str, default=None, help='if no output_dir is specified (None), the results will be saved inside the target_dir')
347
- directory_args.add_argument('--input_file_name', type=str, default='input')
348
- directory_args.add_argument('--reference_file_name', type=str, default='reference')
349
- directory_args.add_argument('--reference_file_name_2interpolate', type=str, default='reference_B')
350
- # saved weights
351
- directory_args.add_argument('--ckpt_path_enc', type=str, default=default_ckpt_path_enc)
352
- directory_args.add_argument('--ckpt_path_conv', type=str, default=default_ckpt_path_conv)
353
- directory_args.add_argument('--precomputed_normalization_feature', type=str, default=default_norm_feature_path)
354
-
355
- inference_args = parser.add_argument_group('Inference args')
356
- inference_args.add_argument('--sample_rate', type=int, default=44100)
357
- inference_args.add_argument('--segment_length', type=int, default=2**19) # segmentize input according to this duration
358
- inference_args.add_argument('--segment_length_ref', type=int, default=2**19) # segmentize reference according to this duration
359
- # stem-level instruments & separation
360
- inference_args.add_argument('--instruments', type=str2bool, default=["drums", "bass", "other", "vocals"], help='instrumental tracks to perform style transfer')
361
- inference_args.add_argument('--stem_level_directory_name', type=str, default='separated')
362
- inference_args.add_argument('--save_each_inst', type=str2bool, default=False)
363
- inference_args.add_argument('--do_not_separate', type=str2bool, default=False)
364
- inference_args.add_argument('--separation_model', type=str, default='mdx_extra')
365
- # FX normalization
366
- inference_args.add_argument('--normalize_input', type=str2bool, default=True)
367
- inference_args.add_argument('--normalization_order', type=str2bool, default=['loudness', 'eq', 'compression', 'imager', 'loudness']) # Effects to be normalized, order matters
368
- # interpolation
369
- inference_args.add_argument('--interpolation', type=str2bool, default=False)
370
- inference_args.add_argument('--interpolate_segments', type=int, default=30)
371
-
372
- device_args = parser.add_argument_group('Device args')
373
- device_args.add_argument('--workers', type=int, default=1)
374
- device_args.add_argument('--inference_device', type=str, default='gpu', help="if this option is not set to 'cpu', inference will happen on gpu only if there is a detected one")
375
- device_args.add_argument('--batch_size', type=int, default=1) # for processing long audio
376
- device_args.add_argument('--separation_device', type=str, default='cpu', help="device for performing source separation using Demucs")
377
-
378
- args = parser.parse_args()
379
-
380
-
381
-
382
- # Perform music mixing style transfer
383
- inference_style_transfer = Mixing_Style_Transfer_Inference(args)
384
- if args.interpolation:
385
- inference_style_transfer.inference_interpolation()
386
- else:
387
- inference_style_transfer.inference()
388
-
389
-
390
-