|
""" |
|
Implementation of objective functions used in the task 'End-to-end Remastering System' |
|
""" |
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
import torch.nn as nn |
|
|
|
import os |
|
import sys |
|
currentdir = os.path.dirname(os.path.realpath(__file__)) |
|
sys.path.append(os.path.dirname(currentdir)) |
|
|
|
from modules.training_utils import * |
|
from modules.front_back_end import * |
|
|
|
|
|
|
|
''' |
|
Normalized Temperature-scaled Cross Entropy (NT-Xent) Loss |
|
below source code (class NT_Xent) is a replication from the github repository - https://github.com/Spijkervet/SimCLR |
|
the original implementation can be found here: https://github.com/Spijkervet/SimCLR/blob/master/simclr/modules/nt_xent.py |
|
''' |
|
class NT_Xent(nn.Module): |
|
def __init__(self, batch_size, temperature, world_size): |
|
super(NT_Xent, self).__init__() |
|
self.batch_size = batch_size |
|
self.temperature = temperature |
|
self.world_size = world_size |
|
|
|
self.mask = self.mask_correlated_samples(batch_size, world_size) |
|
self.criterion = nn.CrossEntropyLoss(reduction="sum") |
|
self.similarity_f = nn.CosineSimilarity(dim=2) |
|
|
|
def mask_correlated_samples(self, batch_size, world_size): |
|
N = 2 * batch_size * world_size |
|
mask = torch.ones((N, N), dtype=bool) |
|
mask = mask.fill_diagonal_(0) |
|
for i in range(batch_size * world_size): |
|
mask[i, batch_size + i] = 0 |
|
mask[batch_size + i, i] = 0 |
|
|
|
|
|
return mask |
|
|
|
def forward(self, z_i, z_j): |
|
""" |
|
We do not sample negative examples explicitly. |
|
Instead, given a positive pair, similar to (Chen et al., 2017), we treat the other 2(N − 1) augmented examples within a minibatch as negative examples. |
|
""" |
|
N = 2 * self.batch_size * self.world_size |
|
|
|
z = torch.cat((z_i, z_j), dim=0) |
|
|
|
if self.world_size > 1: |
|
z = torch.cat(GatherLayer.apply(z), dim=0) |
|
|
|
sim = self.similarity_f(z.unsqueeze(1), z.unsqueeze(0)) / self.temperature |
|
|
|
sim_i_j = torch.diag(sim, self.batch_size * self.world_size) |
|
sim_j_i = torch.diag(sim, -self.batch_size * self.world_size) |
|
|
|
|
|
positive_samples = torch.cat((sim_i_j, sim_j_i), dim=0).reshape(N, 1) |
|
negative_samples = sim[self.mask].reshape(N, -1) |
|
|
|
labels = torch.zeros(N).to(positive_samples.device).long() |
|
logits = torch.cat((positive_samples, negative_samples), dim=1) |
|
loss = self.criterion(logits, labels) |
|
loss /= N |
|
return loss |
|
|
|
|
|
|
|
|
|
|
|
class RMSLoss(nn.Module): |
|
def __init__(self, reduce, loss_type="l2"): |
|
super(RMSLoss, self).__init__() |
|
self.weight_factor = 100. |
|
if loss_type=="l2": |
|
self.loss = nn.MSELoss(reduce=None) |
|
|
|
|
|
def forward(self, est_targets, targets): |
|
est_targets = est_targets.reshape(est_targets.shape[0]*est_targets.shape[1], est_targets.shape[2]) |
|
targets = targets.reshape(targets.shape[0]*targets.shape[1], targets.shape[2]) |
|
normalized_est = torch.sqrt(torch.mean(est_targets**2, dim=-1)) |
|
normalized_tgt = torch.sqrt(torch.mean(targets**2, dim=-1)) |
|
|
|
weight = torch.clamp(torch.abs(normalized_tgt-normalized_est), min=1/self.weight_factor) * self.weight_factor |
|
|
|
return torch.mean(weight**1.5 * self.loss(normalized_est, normalized_tgt)) |
|
|
|
|
|
|
|
|
|
|
|
class MultiScale_Spectral_Loss_MidSide_DDSP(nn.Module): |
|
def __init__(self, mode='midside', \ |
|
reduce=True, \ |
|
n_filters=None, \ |
|
windows_size=None, \ |
|
hops_size=None, \ |
|
window="hann", \ |
|
eps=1e-7, \ |
|
device=torch.device("cpu")): |
|
super(MultiScale_Spectral_Loss_MidSide_DDSP, self).__init__() |
|
self.mode = mode |
|
self.eps = eps |
|
self.mid_weight = 0.5 |
|
self.logmag_weight = 0.1 |
|
|
|
if n_filters is None: |
|
n_filters = [4096, 2048, 1024, 512] |
|
|
|
if windows_size is None: |
|
windows_size = [4096, 2048, 1024, 512] |
|
|
|
if hops_size is None: |
|
hops_size = [1024, 512, 256, 128] |
|
|
|
|
|
self.multiscales = [] |
|
for i in range(len(windows_size)): |
|
cur_scale = {'window_size' : float(windows_size[i])} |
|
if self.mode=='midside': |
|
cur_scale['front_end'] = FrontEnd(channel='mono', \ |
|
n_fft=n_filters[i], \ |
|
hop_length=hops_size[i], \ |
|
win_length=windows_size[i], \ |
|
window=window, \ |
|
device=device) |
|
elif self.mode=='ori': |
|
cur_scale['front_end'] = FrontEnd(channel='stereo', \ |
|
n_fft=n_filters[i], \ |
|
hop_length=hops_size[i], \ |
|
win_length=windows_size[i], \ |
|
window=window, \ |
|
device=device) |
|
self.multiscales.append(cur_scale) |
|
|
|
self.objective_l1 = nn.L1Loss(reduce=reduce) |
|
self.objective_l2 = nn.MSELoss(reduce=reduce) |
|
|
|
|
|
def forward(self, est_targets, targets): |
|
if self.mode=='midside': |
|
return self.forward_midside(est_targets, targets) |
|
elif self.mode=='ori': |
|
return self.forward_ori(est_targets, targets) |
|
|
|
|
|
def forward_ori(self, est_targets, targets): |
|
total_loss = 0.0 |
|
total_mag_loss = 0.0 |
|
total_logmag_loss = 0.0 |
|
for cur_scale in self.multiscales: |
|
est_mag = cur_scale['front_end'](est_targets, mode=["mag"]) |
|
tgt_mag = cur_scale['front_end'](targets, mode=["mag"]) |
|
|
|
mag_loss = self.magnitude_loss(est_mag, tgt_mag) |
|
logmag_loss = self.log_magnitude_loss(est_mag, tgt_mag) |
|
|
|
|
|
total_mag_loss += mag_loss |
|
total_logmag_loss += logmag_loss |
|
|
|
|
|
return (1-self.logmag_weight)*total_mag_loss + \ |
|
(self.logmag_weight)*total_logmag_loss |
|
|
|
|
|
def forward_midside(self, est_targets, targets): |
|
est_mid, est_side = self.to_mid_side(est_targets) |
|
tgt_mid, tgt_side = self.to_mid_side(targets) |
|
total_loss = 0.0 |
|
total_mag_loss = 0.0 |
|
total_logmag_loss = 0.0 |
|
for cur_scale in self.multiscales: |
|
est_mid_mag = cur_scale['front_end'](est_mid, mode=["mag"]) |
|
est_side_mag = cur_scale['front_end'](est_side, mode=["mag"]) |
|
tgt_mid_mag = cur_scale['front_end'](tgt_mid, mode=["mag"]) |
|
tgt_side_mag = cur_scale['front_end'](tgt_side, mode=["mag"]) |
|
|
|
mag_loss = self.mid_weight*self.magnitude_loss(est_mid_mag, tgt_mid_mag) + \ |
|
(1-self.mid_weight)*self.magnitude_loss(est_side_mag, tgt_side_mag) |
|
logmag_loss = self.mid_weight*self.log_magnitude_loss(est_mid_mag, tgt_mid_mag) + \ |
|
(1-self.mid_weight)*self.log_magnitude_loss(est_side_mag, tgt_side_mag) |
|
|
|
|
|
total_mag_loss += mag_loss |
|
total_logmag_loss += logmag_loss |
|
|
|
|
|
return (1-self.logmag_weight)*total_mag_loss + \ |
|
(self.logmag_weight)*total_logmag_loss |
|
|
|
|
|
def to_mid_side(self, stereo_in): |
|
mid = stereo_in[:,0] + stereo_in[:,1] |
|
side = stereo_in[:,0] - stereo_in[:,1] |
|
return mid, side |
|
|
|
|
|
def magnitude_loss(self, est_mag_spec, tgt_mag_spec): |
|
return torch.norm(self.objective_l1(est_mag_spec, tgt_mag_spec)) |
|
|
|
|
|
def log_magnitude_loss(self, est_mag_spec, tgt_mag_spec): |
|
est_log_mag_spec = torch.log10(est_mag_spec+self.eps) |
|
tgt_log_mag_spec = torch.log10(tgt_mag_spec+self.eps) |
|
return self.objective_l2(est_log_mag_spec, tgt_log_mag_spec) |
|
|
|
|
|
|
|
|
|
def dis_hinge(dis_fake, dis_real): |
|
return torch.mean(torch.relu(1. - dis_real)) + torch.mean(torch.relu(1. + dis_fake)) |
|
|
|
|
|
|
|
def gen_hinge(dis_fake, dis_real=None): |
|
return -torch.mean(dis_fake) |
|
|
|
|
|
|
|
def infoNCE(nn, p, temperature=0.1): |
|
nn = torch.nn.functional.normalize(nn, dim=1) |
|
p = torch.nn.functional.normalize(p, dim=1) |
|
nn = gather_from_all(nn) |
|
p = gather_from_all(p) |
|
logits = nn @ p.T |
|
logits /= temperature |
|
n = p.shape[0] |
|
labels = torch.arange(0, n, dtype=torch.long).cuda() |
|
loss = torch.nn.functional.cross_entropy(logits, labels) |
|
return loss |
|
|
|
|
|
|
|
|
|
|
|
class Loss: |
|
def __init__(self, args, reduce=True): |
|
device = torch.device("cpu") |
|
if torch.cuda.is_available(): |
|
device = torch.device(f"cuda:{args.gpu}") |
|
self.l1 = nn.L1Loss(reduce=reduce) |
|
self.mse = nn.MSELoss(reduce=reduce) |
|
self.ce = nn.CrossEntropyLoss() |
|
self.triplet = nn.TripletMarginLoss(margin=1., p=2) |
|
|
|
|
|
self.ntxent = NT_Xent(args.batch_size_total*(args.num_strong_negatives+1), args.temperature, world_size=1) |
|
self.multi_scale_spectral_midside = MultiScale_Spectral_Loss_MidSide_DDSP(mode='midside', eps=args.eps, device=device) |
|
self.multi_scale_spectral_ori = MultiScale_Spectral_Loss_MidSide_DDSP(mode='ori', eps=args.eps, device=device) |
|
self.gain = RMSLoss(reduce=reduce) |
|
self.infonce = infoNCE |
|
|
|
|