|
""" |
|
Inference code of extracting embeddings from music recordings using FXencoder |
|
of the work "Music Mixing Style Transfer: A Contrastive Learning Approach to Disentangle Audio Effects" |
|
|
|
Process : extracts FX embeddings of each song inside the target directory. |
|
""" |
|
from glob import glob |
|
import os |
|
import librosa |
|
import numpy as np |
|
import torch |
|
|
|
import sys |
|
currentdir = os.path.dirname(os.path.realpath(__file__)) |
|
sys.path.append(os.path.join(os.path.dirname(currentdir), "mixing_style_transfer")) |
|
from networks import FXencoder |
|
from data_loader import * |
|
|
|
|
|
class FXencoder_Inference: |
|
def __init__(self, args, trained_w_ddp=True): |
|
if args.inference_device!='cpu' and torch.cuda.is_available(): |
|
self.device = torch.device("cuda:0") |
|
else: |
|
self.device = torch.device("cpu") |
|
|
|
|
|
self.segment_length = args.segment_length |
|
self.batch_size = args.batch_size |
|
self.sample_rate = 44100 |
|
self.time_in_seconds = int(args.segment_length // self.sample_rate) |
|
|
|
|
|
self.output_dir = args.target_dir if args.output_dir==None else args.output_dir |
|
self.target_dir = args.target_dir |
|
|
|
|
|
self.models = {} |
|
self.models['effects_encoder'] = FXencoder(args.cfg_encoder).to(self.device) |
|
ckpt_paths = {'effects_encoder' : args.ckpt_path_enc} |
|
|
|
ddp = trained_w_ddp |
|
self.reload_weights(ckpt_paths, ddp=ddp) |
|
|
|
|
|
self.save_args(args) |
|
|
|
|
|
|
|
def reload_weights(self, ckpt_paths, ddp=True): |
|
for cur_model_name in self.models.keys(): |
|
checkpoint = torch.load(ckpt_paths[cur_model_name], map_location=self.device) |
|
|
|
from collections import OrderedDict |
|
new_state_dict = OrderedDict() |
|
for k, v in checkpoint["model"].items(): |
|
|
|
name = k[7:] if ddp else k |
|
new_state_dict[name] = v |
|
|
|
|
|
self.models[cur_model_name].load_state_dict(new_state_dict) |
|
|
|
print(f"---reloaded checkpoint weights : {cur_model_name} ---") |
|
|
|
|
|
|
|
def save_averaged_embeddings(self, ): |
|
|
|
emb_out_dir = f"{self.output_dir}" |
|
print(f'\n\n=====Inference seconds : {self.time_in_seconds}=====') |
|
|
|
|
|
target_file_paths = glob(os.path.join(self.target_dir, '**', '*.wav'), recursive=True) |
|
for step, target_file_path in enumerate(target_file_paths): |
|
print(f"\nInference step : {step+1}/{len(target_file_paths)}") |
|
print(f"---current file path : {target_file_path}---") |
|
|
|
''' load waveform signal ''' |
|
target_song_whole = load_wav_segment(target_file_path, axis=0) |
|
|
|
if len(target_song_whole.shape)==1: |
|
target_song_whole = np.stack((target_song_whole, target_song_whole), axis=0) |
|
|
|
|
|
elif target_song_whole.shape[1]==2: |
|
target_song_whole = target_song_whole.transpose() |
|
target_song_whole = torch.from_numpy(target_song_whole).float() |
|
''' segmentize whole songs into batch ''' |
|
whole_batch_data = self.batchwise_segmentization(target_song_whole, target_file_path) |
|
|
|
''' inference ''' |
|
|
|
infered_data_list = [] |
|
infered_c_list = [] |
|
infered_z_list = [] |
|
for cur_idx, cur_data in enumerate(whole_batch_data): |
|
cur_data = cur_data.to(self.device) |
|
|
|
with torch.no_grad(): |
|
self.models["effects_encoder"].eval() |
|
|
|
out_c_emb = self.models["effects_encoder"](cur_data) |
|
infered_c_list.append(out_c_emb.cpu().detach()) |
|
avg_c_feat = torch.mean(torch.cat(infered_c_list, dim=0), dim=0).squeeze().cpu().detach().numpy() |
|
|
|
|
|
cur_output_path = target_file_path.replace(self.target_dir, self.output_dir).replace('.wav', '_fx_embedding.npy') |
|
os.makedirs(os.path.dirname(cur_output_path), exist_ok=True) |
|
np.save(cur_output_path, avg_c_feat) |
|
|
|
|
|
|
|
def batchwise_segmentization(self, target_song, target_file_path, discard_last=False): |
|
assert target_song.shape[-1] >= self.segment_length, \ |
|
f"Error : Insufficient duration!\n\t \ |
|
Target song's length is shorter than segment length.\n\t \ |
|
Song name : {target_file_path}\n\t \ |
|
Consider changing the 'segment_length' or song with sufficient duration" |
|
|
|
|
|
if discard_last: |
|
target_length = target_song.shape[-1] - target_song.shape[-1] % self.segment_length |
|
target_song = target_song[:, :target_length] |
|
|
|
else: |
|
pad_length = self.segment_length - target_song.shape[-1] % self.segment_length |
|
target_song = torch.cat((target_song, torch.zeros(2, pad_length)), axis=-1) |
|
|
|
whole_batch_data = [] |
|
batch_wise_data = [] |
|
for cur_segment_idx in range(target_song.shape[-1]//self.segment_length): |
|
batch_wise_data.append(target_song[..., cur_segment_idx*self.segment_length:(cur_segment_idx+1)*self.segment_length]) |
|
if len(batch_wise_data)==self.batch_size: |
|
whole_batch_data.append(torch.stack(batch_wise_data, dim=0)) |
|
batch_wise_data = [] |
|
if batch_wise_data: |
|
whole_batch_data.append(torch.stack(batch_wise_data, dim=0)) |
|
|
|
return whole_batch_data |
|
|
|
|
|
|
|
def save_args(self, params): |
|
info = '\n[args]\n' |
|
for sub_args in parser._action_groups: |
|
if sub_args.title in ['positional arguments', 'optional arguments', 'options']: |
|
continue |
|
size_sub = len(sub_args._group_actions) |
|
info += f' {sub_args.title} ({size_sub})\n' |
|
for i, arg in enumerate(sub_args._group_actions): |
|
prefix = '-' |
|
info += f' {prefix} {arg.dest:20s}: {getattr(params, arg.dest)}\n' |
|
info += '\n' |
|
|
|
os.makedirs(self.output_dir, exist_ok=True) |
|
record_path = f"{self.output_dir}feature_extraction_inference_configurations.txt" |
|
f = open(record_path, 'w') |
|
np.savetxt(f, [info], delimiter=" ", fmt="%s") |
|
f.close() |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
''' Configurations for inferencing music effects encoder ''' |
|
currentdir = os.path.dirname(os.path.realpath(__file__)) |
|
default_ckpt_path = os.path.join(os.path.dirname(currentdir), 'weights', 'FXencoder_ps.pt') |
|
|
|
import argparse |
|
import yaml |
|
parser = argparse.ArgumentParser() |
|
|
|
directory_args = parser.add_argument_group('Directory args') |
|
directory_args.add_argument('--target_dir', type=str, default='./samples/') |
|
directory_args.add_argument('--output_dir', type=str, default=None, help='if no output_dir is specified (None), the results will be saved inside the target_dir') |
|
directory_args.add_argument('--ckpt_path_enc', type=str, default=default_ckpt_path) |
|
|
|
inference_args = parser.add_argument_group('Inference args') |
|
inference_args.add_argument('--segment_length', type=int, default=44100*10) |
|
inference_args.add_argument('--batch_size', type=int, default=1) |
|
inference_args.add_argument('--inference_device', type=str, default='cpu', help="if this option is not set to 'cpu', inference will happen on gpu only if there is a detected one") |
|
|
|
args = parser.parse_args() |
|
|
|
|
|
with open(os.path.join(currentdir, 'configs.yaml'), 'r') as f: |
|
configs = yaml.full_load(f) |
|
args.cfg_encoder = configs['Effects_Encoder']['default'] |
|
|
|
|
|
inference_encoder = FXencoder_Inference(args) |
|
inference_encoder.save_averaged_embeddings() |
|
|
|
|