Spaces:
Runtime error
Runtime error
jhshao
commited on
Commit
•
02f6d94
1
Parent(s):
8bd250a
add app
Browse files- .gitattributes copy +37 -0
- README.md +18 -6
- app.py +362 -0
- chronodepth_pipeline.py +530 -0
- gradio_patches/examples.py +13 -0
- requirements.txt +14 -0
.gitattributes copy
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
files/sora_1764106507569053773.mp4 filter=lfs diff=lfs merge=lfs -text
|
37 |
+
files/sora_e2.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,13 +1,25 @@
|
|
1 |
---
|
2 |
title: ChronoDepth
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 4.36.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
license:
|
11 |
---
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
title: ChronoDepth
|
3 |
+
emoji: 🔥
|
4 |
+
colorFrom: pink
|
5 |
+
colorTo: blue
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.36.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: cc-by-4.0
|
11 |
---
|
12 |
|
13 |
+
|
14 |
+
This is a demo of the monocular video depth estimation pipeline, described in the paper titled ["Learning Temporally Consistent Video Depth from Video Diffusion Priors"](https://arxiv.org/abs/2406.01493).
|
15 |
+
|
16 |
+
```bibtex
|
17 |
+
@misc{shao2024learning,
|
18 |
+
title={Learning Temporally Consistent Video Depth from Video Diffusion Priors},
|
19 |
+
author={Jiahao Shao and Yuanbo Yang and Hongyu Zhou and Youmin Zhang and Yujun Shen and Matteo Poggi and Yiyi Liao},
|
20 |
+
year={2024},
|
21 |
+
eprint={2406.01493},
|
22 |
+
archivePrefix={arXiv},
|
23 |
+
primaryClass={cs.CV}
|
24 |
+
}
|
25 |
+
```
|
app.py
ADDED
@@ -0,0 +1,362 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MIT License
|
2 |
+
|
3 |
+
# Copyright (c) 2024 Jiahao Shao
|
4 |
+
|
5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
7 |
+
# in the Software without restriction, including without limitation the rights
|
8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
10 |
+
# furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
# The above copyright notice and this permission notice shall be included in all
|
13 |
+
# copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
# SOFTWARE.
|
22 |
+
|
23 |
+
import functools
|
24 |
+
import os
|
25 |
+
import zipfile
|
26 |
+
import tempfile
|
27 |
+
from io import BytesIO
|
28 |
+
|
29 |
+
import spaces
|
30 |
+
import gradio as gr
|
31 |
+
import numpy as np
|
32 |
+
import torch as torch
|
33 |
+
from PIL import Image
|
34 |
+
from tqdm import tqdm
|
35 |
+
import mediapy as media
|
36 |
+
|
37 |
+
from huggingface_hub import login
|
38 |
+
|
39 |
+
from chronodepth_pipeline import ChronoDepthPipeline
|
40 |
+
from gradio_patches.examples import Examples
|
41 |
+
|
42 |
+
default_seed = 2024
|
43 |
+
|
44 |
+
default_num_inference_steps = 5
|
45 |
+
default_num_frames = 10
|
46 |
+
default_window_size = 9
|
47 |
+
default_video_processing_resolution = 768
|
48 |
+
default_video_out_max_frames = 10
|
49 |
+
default_decode_chunk_size = 10
|
50 |
+
|
51 |
+
def process_video(
|
52 |
+
pipe,
|
53 |
+
path_input,
|
54 |
+
num_inference_steps=default_num_inference_steps,
|
55 |
+
num_frames=default_num_frames,
|
56 |
+
window_size=default_window_size,
|
57 |
+
out_max_frames=default_video_out_max_frames,
|
58 |
+
progress=gr.Progress(),
|
59 |
+
):
|
60 |
+
if path_input is None:
|
61 |
+
raise gr.Error(
|
62 |
+
"Missing video in the first pane: upload a file or use one from the gallery below."
|
63 |
+
)
|
64 |
+
|
65 |
+
name_base, name_ext = os.path.splitext(os.path.basename(path_input))
|
66 |
+
print(f"Processing video {name_base}{name_ext}")
|
67 |
+
|
68 |
+
path_output_dir = tempfile.mkdtemp()
|
69 |
+
path_out_vis = os.path.join(path_output_dir, f"{name_base}_depth_colored.mp4")
|
70 |
+
path_out_16bit = os.path.join(path_output_dir, f"{name_base}_depth_16bit.zip")
|
71 |
+
|
72 |
+
generator = torch.Generator(device=pipe.device).manual_seed(default_seed)
|
73 |
+
|
74 |
+
import time
|
75 |
+
start_time = time.time()
|
76 |
+
zipf = None
|
77 |
+
try:
|
78 |
+
if window_size is None or window_size == num_frames:
|
79 |
+
inpaint_inference = False
|
80 |
+
else:
|
81 |
+
inpaint_inference = True
|
82 |
+
data_ls = []
|
83 |
+
video_data = media.read_video(path_input)
|
84 |
+
video_length = len(video_data)
|
85 |
+
fps = video_data.metadata.fps
|
86 |
+
|
87 |
+
duration_sec = video_length / fps
|
88 |
+
|
89 |
+
out_duration_sec = out_max_frames / fps
|
90 |
+
if duration_sec > out_duration_sec:
|
91 |
+
gr.Warning(
|
92 |
+
f"Only the first ~{int(out_duration_sec)} seconds will be processed; "
|
93 |
+
f"use alternative setups such as ChronoDepth on github for full processing"
|
94 |
+
)
|
95 |
+
video_length = out_max_frames
|
96 |
+
|
97 |
+
for i in tqdm(range(video_length-num_frames+1)):
|
98 |
+
is_first_clip = i == 0
|
99 |
+
is_last_clip = i == video_length - num_frames
|
100 |
+
is_new_clip = (
|
101 |
+
(inpaint_inference and i % window_size == 0)
|
102 |
+
or (inpaint_inference == False and i % num_frames == 0)
|
103 |
+
)
|
104 |
+
if is_first_clip or is_last_clip or is_new_clip:
|
105 |
+
data_ls.append(np.array(video_data[i: i+num_frames])) # [t, H, W, 3]
|
106 |
+
|
107 |
+
zipf = zipfile.ZipFile(path_out_16bit, "w", zipfile.ZIP_DEFLATED)
|
108 |
+
|
109 |
+
depth_colored_pred = []
|
110 |
+
depth_pred = []
|
111 |
+
# -------------------- Inference and saving --------------------
|
112 |
+
with torch.no_grad():
|
113 |
+
for iter, batch in enumerate(tqdm(data_ls)):
|
114 |
+
rgb_int = batch
|
115 |
+
input_images = [Image.fromarray(rgb_int[i]) for i in range(num_frames)]
|
116 |
+
|
117 |
+
# Predict depth
|
118 |
+
if iter == 0: # First clip
|
119 |
+
pipe_out = pipe(
|
120 |
+
input_images,
|
121 |
+
num_frames=len(input_images),
|
122 |
+
num_inference_steps=num_inference_steps,
|
123 |
+
decode_chunk_size=default_decode_chunk_size,
|
124 |
+
motion_bucket_id=127,
|
125 |
+
fps=7,
|
126 |
+
noise_aug_strength=0.0,
|
127 |
+
generator=generator,
|
128 |
+
)
|
129 |
+
elif inpaint_inference and (iter == len(data_ls) - 1): # temporal inpaint inference for last clip
|
130 |
+
last_window_size = window_size if video_length%window_size == 0 else video_length%window_size
|
131 |
+
pipe_out = pipe(
|
132 |
+
input_images,
|
133 |
+
num_frames=num_frames,
|
134 |
+
num_inference_steps=num_inference_steps,
|
135 |
+
decode_chunk_size=default_decode_chunk_size,
|
136 |
+
motion_bucket_id=127,
|
137 |
+
fps=7,
|
138 |
+
noise_aug_strength=0.0,
|
139 |
+
generator=generator,
|
140 |
+
depth_pred_last=depth_frames_pred_ts[last_window_size:],
|
141 |
+
)
|
142 |
+
elif inpaint_inference and iter > 0: # temporal inpaint inference
|
143 |
+
pipe_out = pipe(
|
144 |
+
input_images,
|
145 |
+
num_frames=num_frames,
|
146 |
+
num_inference_steps=num_inference_steps,
|
147 |
+
decode_chunk_size=default_decode_chunk_size,
|
148 |
+
motion_bucket_id=127,
|
149 |
+
fps=7,
|
150 |
+
noise_aug_strength=0.0,
|
151 |
+
generator=generator,
|
152 |
+
depth_pred_last=depth_frames_pred_ts[window_size:],
|
153 |
+
)
|
154 |
+
else: # separate inference
|
155 |
+
pipe_out = pipe(
|
156 |
+
input_images,
|
157 |
+
num_frames=num_frames,
|
158 |
+
num_inference_steps=num_inference_steps,
|
159 |
+
decode_chunk_size=default_decode_chunk_size,
|
160 |
+
motion_bucket_id=127,
|
161 |
+
fps=7,
|
162 |
+
noise_aug_strength=0.0,
|
163 |
+
generator=generator,
|
164 |
+
)
|
165 |
+
|
166 |
+
depth_frames_pred = [pipe_out.depth_np[i] for i in range(num_frames)]
|
167 |
+
|
168 |
+
depth_frames_colored_pred = []
|
169 |
+
for i in range(num_frames):
|
170 |
+
depth_frame_colored_pred = np.array(pipe_out.depth_colored[i])
|
171 |
+
depth_frames_colored_pred.append(depth_frame_colored_pred)
|
172 |
+
depth_frames_colored_pred = np.stack(depth_frames_colored_pred, axis=0)
|
173 |
+
|
174 |
+
depth_frames_pred = np.stack(depth_frames_pred, axis=0)
|
175 |
+
depth_frames_pred_ts = torch.from_numpy(depth_frames_pred).to(pipe.device)
|
176 |
+
depth_frames_pred_ts = depth_frames_pred_ts * 2 - 1
|
177 |
+
|
178 |
+
if inpaint_inference == False:
|
179 |
+
if iter == len(data_ls) - 1:
|
180 |
+
last_window_size = num_frames if video_length%num_frames == 0 else video_length%num_frames
|
181 |
+
depth_colored_pred.append(depth_frames_colored_pred[-last_window_size:])
|
182 |
+
depth_pred.append(depth_frames_pred[-last_window_size:])
|
183 |
+
else:
|
184 |
+
depth_colored_pred.append(depth_frames_colored_pred)
|
185 |
+
depth_pred.append(depth_frames_pred)
|
186 |
+
else:
|
187 |
+
if iter == 0:
|
188 |
+
depth_colored_pred.append(depth_frames_colored_pred)
|
189 |
+
depth_pred.append(depth_frames_pred)
|
190 |
+
elif iter == len(data_ls) - 1:
|
191 |
+
depth_colored_pred.append(depth_frames_colored_pred[-last_window_size:])
|
192 |
+
depth_pred.append(depth_frames_pred[-last_window_size:])
|
193 |
+
else:
|
194 |
+
depth_colored_pred.append(depth_frames_colored_pred[-window_size:])
|
195 |
+
depth_pred.append(depth_frames_pred[-window_size:])
|
196 |
+
|
197 |
+
depth_colored_pred = np.concatenate(depth_colored_pred, axis=0)
|
198 |
+
depth_pred = np.concatenate(depth_pred, axis=0)
|
199 |
+
|
200 |
+
# -------------------- Save results --------------------
|
201 |
+
# Save images
|
202 |
+
for i in tqdm(range(len(depth_pred))):
|
203 |
+
archive_path = os.path.join(
|
204 |
+
f"{name_base}_depth_16bit", f"{i:05d}.png"
|
205 |
+
)
|
206 |
+
img_byte_arr = BytesIO()
|
207 |
+
depth_16bit = Image.fromarray((depth_pred[i] * 65535.0).astype(np.uint16))
|
208 |
+
depth_16bit.save(img_byte_arr, format="png")
|
209 |
+
img_byte_arr.seek(0)
|
210 |
+
zipf.writestr(archive_path, img_byte_arr.read())
|
211 |
+
|
212 |
+
# Export to video
|
213 |
+
media.write_video(path_out_vis, depth_colored_pred, fps=fps)
|
214 |
+
finally:
|
215 |
+
if zipf is not None:
|
216 |
+
zipf.close()
|
217 |
+
|
218 |
+
end_time = time.time()
|
219 |
+
print(f"Processing time: {end_time - start_time} seconds")
|
220 |
+
return (
|
221 |
+
path_out_vis,
|
222 |
+
[path_out_vis, path_out_16bit],
|
223 |
+
)
|
224 |
+
|
225 |
+
|
226 |
+
def run_demo_server(pipe):
|
227 |
+
process_pipe_video = spaces.GPU(
|
228 |
+
functools.partial(process_video, pipe), duration=210
|
229 |
+
)
|
230 |
+
os.environ["GRADIO_ALLOW_FLAGGING"] = "never"
|
231 |
+
|
232 |
+
with gr.Blocks(
|
233 |
+
analytics_enabled=False,
|
234 |
+
title="ChronoDepth Video Depth Estimation",
|
235 |
+
css="""
|
236 |
+
#download {
|
237 |
+
height: 118px;
|
238 |
+
}
|
239 |
+
.slider .inner {
|
240 |
+
width: 5px;
|
241 |
+
background: #FFF;
|
242 |
+
}
|
243 |
+
.viewport {
|
244 |
+
aspect-ratio: 4/3;
|
245 |
+
}
|
246 |
+
h1 {
|
247 |
+
text-align: center;
|
248 |
+
display: block;
|
249 |
+
}
|
250 |
+
h2 {
|
251 |
+
text-align: center;
|
252 |
+
display: block;
|
253 |
+
}
|
254 |
+
h3 {
|
255 |
+
text-align: center;
|
256 |
+
display: block;
|
257 |
+
}
|
258 |
+
""",
|
259 |
+
) as demo:
|
260 |
+
gr.Markdown(
|
261 |
+
"""
|
262 |
+
# ChronoDepth Video Depth Estimation
|
263 |
+
|
264 |
+
<p align="center">
|
265 |
+
<a title="Website" href="https://jhaoshao.github.io/ChronoDepth/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
266 |
+
<img src="https://img.shields.io/website?url=https%3A%2F%2Fjhaoshao.github.io%2FChronoDepth%2F&up_message=ChronoDepth&up_color=blue&style=flat&logo=timescale&logoColor=%23FFDC0F">
|
267 |
+
</a>
|
268 |
+
<a title="arXiv" href="https://arxiv.org/abs/2312.02145" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
269 |
+
<img src="https://img.shields.io/badge/arXiv-PDF-b31b1b">
|
270 |
+
</a>
|
271 |
+
<a title="Github" href="https://github.com/jhaoshao/ChronoDepth" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
272 |
+
<img src="https://img.shields.io/github/stars/jhaoshao/ChronoDepth?label=GitHub%20%E2%98%85&logo=github&color=C8C" alt="badge-github-stars">
|
273 |
+
</a>
|
274 |
+
</p>
|
275 |
+
|
276 |
+
ChronoDepth is the state-of-the-art video depth estimator for videos in the wild.
|
277 |
+
Upload your video and have a try!<br>
|
278 |
+
We set denoising steps to 5, number of frames for each video clip to 10, and overlap between clips to 1.
|
279 |
+
|
280 |
+
"""
|
281 |
+
)
|
282 |
+
|
283 |
+
with gr.Row():
|
284 |
+
with gr.Column():
|
285 |
+
video_input = gr.Video(
|
286 |
+
label="Input Video",
|
287 |
+
sources=["upload"],
|
288 |
+
)
|
289 |
+
with gr.Row():
|
290 |
+
video_submit_btn = gr.Button(
|
291 |
+
value="Compute Depth", variant="primary"
|
292 |
+
)
|
293 |
+
video_reset_btn = gr.Button(value="Reset")
|
294 |
+
with gr.Column():
|
295 |
+
video_output_video = gr.Video(
|
296 |
+
label="Output video depth (red-near, blue-far)",
|
297 |
+
interactive=False,
|
298 |
+
)
|
299 |
+
video_output_files = gr.Files(
|
300 |
+
label="Depth outputs",
|
301 |
+
elem_id="download",
|
302 |
+
interactive=False,
|
303 |
+
)
|
304 |
+
Examples(
|
305 |
+
fn=process_pipe_video,
|
306 |
+
examples=[
|
307 |
+
os.path.join("files", name)
|
308 |
+
for name in [
|
309 |
+
"sora_e2.mp4",
|
310 |
+
"sora_1758192960116785459.mp4",
|
311 |
+
]
|
312 |
+
],
|
313 |
+
inputs=[video_input],
|
314 |
+
outputs=[video_output_video, video_output_files],
|
315 |
+
cache_examples=True,
|
316 |
+
directory_name="examples_video",
|
317 |
+
)
|
318 |
+
|
319 |
+
video_submit_btn.click(
|
320 |
+
fn=process_pipe_video,
|
321 |
+
inputs=[video_input],
|
322 |
+
outputs=[video_output_video, video_output_files],
|
323 |
+
concurrency_limit=1,
|
324 |
+
)
|
325 |
+
|
326 |
+
video_reset_btn.click(
|
327 |
+
fn=lambda: (None, None, None),
|
328 |
+
inputs=[],
|
329 |
+
outputs=[video_input, video_output_video],
|
330 |
+
concurrency_limit=1,
|
331 |
+
)
|
332 |
+
|
333 |
+
demo.queue(
|
334 |
+
api_open=False,
|
335 |
+
).launch(
|
336 |
+
server_name="0.0.0.0",
|
337 |
+
server_port=7860,
|
338 |
+
)
|
339 |
+
|
340 |
+
|
341 |
+
def main():
|
342 |
+
CHECKPOINT = "jhshao/ChronoDepth"
|
343 |
+
|
344 |
+
if "HF_TOKEN_LOGIN" in os.environ:
|
345 |
+
login(token=os.environ["HF_TOKEN_LOGIN"])
|
346 |
+
|
347 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
348 |
+
print(f"Running on device: {device}")
|
349 |
+
pipe = ChronoDepthPipeline.from_pretrained(CHECKPOINT)
|
350 |
+
try:
|
351 |
+
import xformers
|
352 |
+
|
353 |
+
pipe.enable_xformers_memory_efficient_attention()
|
354 |
+
except:
|
355 |
+
pass # run without xformers
|
356 |
+
|
357 |
+
pipe = pipe.to(device)
|
358 |
+
run_demo_server(pipe)
|
359 |
+
|
360 |
+
|
361 |
+
if __name__ == "__main__":
|
362 |
+
main()
|
chronodepth_pipeline.py
ADDED
@@ -0,0 +1,530 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from Marigold: https://github.com/prs-eth/Marigold and diffusers
|
2 |
+
|
3 |
+
import inspect
|
4 |
+
from typing import Union, Optional, List
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import numpy as np
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
from tqdm.auto import tqdm
|
10 |
+
import PIL
|
11 |
+
from PIL import Image
|
12 |
+
from diffusers import (
|
13 |
+
DiffusionPipeline,
|
14 |
+
EulerDiscreteScheduler,
|
15 |
+
UNetSpatioTemporalConditionModel,
|
16 |
+
AutoencoderKLTemporalDecoder,
|
17 |
+
)
|
18 |
+
from diffusers.image_processor import VaeImageProcessor
|
19 |
+
from diffusers.utils import BaseOutput
|
20 |
+
from diffusers.utils.torch_utils import is_compiled_module, randn_tensor
|
21 |
+
from transformers import (
|
22 |
+
CLIPVisionModelWithProjection,
|
23 |
+
CLIPImageProcessor,
|
24 |
+
)
|
25 |
+
from einops import rearrange, repeat
|
26 |
+
|
27 |
+
|
28 |
+
class ChronoDepthOutput(BaseOutput):
|
29 |
+
r"""
|
30 |
+
Output class for zero-shot text-to-video pipeline.
|
31 |
+
|
32 |
+
Args:
|
33 |
+
frames (`[List[PIL.Image.Image]`, `np.ndarray`]):
|
34 |
+
List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
|
35 |
+
num_channels)`.
|
36 |
+
"""
|
37 |
+
depth_np: np.ndarray
|
38 |
+
depth_colored: Union[List[PIL.Image.Image], np.ndarray]
|
39 |
+
|
40 |
+
|
41 |
+
class ChronoDepthPipeline(DiffusionPipeline):
|
42 |
+
model_cpu_offload_seq = "image_encoder->unet->vae"
|
43 |
+
_callback_tensor_inputs = ["latents"]
|
44 |
+
rgb_latent_scale_factor = 0.18215
|
45 |
+
depth_latent_scale_factor = 0.18215
|
46 |
+
|
47 |
+
def __init__(
|
48 |
+
self,
|
49 |
+
vae: AutoencoderKLTemporalDecoder,
|
50 |
+
image_encoder: CLIPVisionModelWithProjection,
|
51 |
+
unet: UNetSpatioTemporalConditionModel,
|
52 |
+
scheduler: EulerDiscreteScheduler,
|
53 |
+
feature_extractor: CLIPImageProcessor,
|
54 |
+
):
|
55 |
+
super().__init__()
|
56 |
+
|
57 |
+
self.register_modules(
|
58 |
+
vae=vae,
|
59 |
+
image_encoder=image_encoder,
|
60 |
+
unet=unet,
|
61 |
+
scheduler=scheduler,
|
62 |
+
feature_extractor=feature_extractor,
|
63 |
+
)
|
64 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
65 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
66 |
+
if not hasattr(self, "dtype"):
|
67 |
+
self.dtype = self.unet.dtype
|
68 |
+
|
69 |
+
def encode_RGB(self,
|
70 |
+
image: torch.Tensor,
|
71 |
+
):
|
72 |
+
video_length = image.shape[1]
|
73 |
+
image = rearrange(image, "b f c h w -> (b f) c h w")
|
74 |
+
latents = self.vae.encode(image).latent_dist.sample()
|
75 |
+
latents = rearrange(latents, "(b f) c h w -> b f c h w", f=video_length)
|
76 |
+
latents = latents * self.vae.config.scaling_factor
|
77 |
+
|
78 |
+
return latents
|
79 |
+
|
80 |
+
def _encode_image(self, image, device, discard=True):
|
81 |
+
'''
|
82 |
+
set image to zero tensor discards the image embeddings if discard is True
|
83 |
+
'''
|
84 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
85 |
+
|
86 |
+
if not isinstance(image, torch.Tensor):
|
87 |
+
image = self.image_processor.pil_to_numpy(image)
|
88 |
+
if discard:
|
89 |
+
image = np.zeros_like(image)
|
90 |
+
image = self.image_processor.numpy_to_pt(image)
|
91 |
+
|
92 |
+
# We normalize the image before resizing to match with the original implementation.
|
93 |
+
# Then we unnormalize it after resizing.
|
94 |
+
image = image * 2.0 - 1.0
|
95 |
+
image = _resize_with_antialiasing(image, (224, 224))
|
96 |
+
image = (image + 1.0) / 2.0
|
97 |
+
|
98 |
+
# Normalize the image with for CLIP input
|
99 |
+
image = self.feature_extractor(
|
100 |
+
images=image,
|
101 |
+
do_normalize=True,
|
102 |
+
do_center_crop=False,
|
103 |
+
do_resize=False,
|
104 |
+
do_rescale=False,
|
105 |
+
return_tensors="pt",
|
106 |
+
).pixel_values
|
107 |
+
|
108 |
+
image = image.to(device=device, dtype=dtype)
|
109 |
+
image_embeddings = self.image_encoder(image).image_embeds
|
110 |
+
image_embeddings = image_embeddings.unsqueeze(1)
|
111 |
+
|
112 |
+
return image_embeddings
|
113 |
+
|
114 |
+
def decode_depth(self, depth_latent: torch.Tensor, decode_chunk_size=5) -> torch.Tensor:
|
115 |
+
num_frames = depth_latent.shape[1]
|
116 |
+
depth_latent = rearrange(depth_latent, "b f c h w -> (b f) c h w")
|
117 |
+
|
118 |
+
depth_latent = depth_latent / self.vae.config.scaling_factor
|
119 |
+
|
120 |
+
forward_vae_fn = self.vae._orig_mod.forward if is_compiled_module(self.vae) else self.vae.forward
|
121 |
+
accepts_num_frames = "num_frames" in set(inspect.signature(forward_vae_fn).parameters.keys())
|
122 |
+
|
123 |
+
depth_frames = []
|
124 |
+
for i in range(0, depth_latent.shape[0], decode_chunk_size):
|
125 |
+
num_frames_in = depth_latent[i : i + decode_chunk_size].shape[0]
|
126 |
+
decode_kwargs = {}
|
127 |
+
if accepts_num_frames:
|
128 |
+
# we only pass num_frames_in if it's expected
|
129 |
+
decode_kwargs["num_frames"] = num_frames_in
|
130 |
+
|
131 |
+
depth_frame = self.vae.decode(depth_latent[i : i + decode_chunk_size], **decode_kwargs).sample
|
132 |
+
depth_frames.append(depth_frame)
|
133 |
+
|
134 |
+
depth_frames = torch.cat(depth_frames, dim=0)
|
135 |
+
depth_frames = depth_frames.reshape(-1, num_frames, *depth_frames.shape[1:])
|
136 |
+
depth_mean = depth_frames.mean(dim=2, keepdim=True)
|
137 |
+
|
138 |
+
return depth_mean
|
139 |
+
|
140 |
+
def _get_add_time_ids(self,
|
141 |
+
fps,
|
142 |
+
motion_bucket_id,
|
143 |
+
noise_aug_strength,
|
144 |
+
dtype,
|
145 |
+
batch_size,
|
146 |
+
):
|
147 |
+
add_time_ids = [fps, motion_bucket_id, noise_aug_strength]
|
148 |
+
|
149 |
+
passed_add_embed_dim = self.unet.config.addition_time_embed_dim * \
|
150 |
+
len(add_time_ids)
|
151 |
+
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
|
152 |
+
|
153 |
+
if expected_add_embed_dim != passed_add_embed_dim:
|
154 |
+
raise ValueError(
|
155 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
156 |
+
)
|
157 |
+
|
158 |
+
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
159 |
+
add_time_ids = add_time_ids.repeat(batch_size, 1)
|
160 |
+
return add_time_ids
|
161 |
+
|
162 |
+
def decode_latents(self, latents, num_frames, decode_chunk_size=14):
|
163 |
+
# [batch, frames, channels, height, width] -> [batch*frames, channels, height, width]
|
164 |
+
latents = latents.flatten(0, 1)
|
165 |
+
|
166 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
167 |
+
|
168 |
+
forward_vae_fn = self.vae._orig_mod.forward if is_compiled_module(self.vae) else self.vae.forward
|
169 |
+
accepts_num_frames = "num_frames" in set(inspect.signature(forward_vae_fn).parameters.keys())
|
170 |
+
|
171 |
+
# decode decode_chunk_size frames at a time to avoid OOM
|
172 |
+
frames = []
|
173 |
+
for i in range(0, latents.shape[0], decode_chunk_size):
|
174 |
+
num_frames_in = latents[i : i + decode_chunk_size].shape[0]
|
175 |
+
decode_kwargs = {}
|
176 |
+
if accepts_num_frames:
|
177 |
+
# we only pass num_frames_in if it's expected
|
178 |
+
decode_kwargs["num_frames"] = num_frames_in
|
179 |
+
|
180 |
+
frame = self.vae.decode(latents[i : i + decode_chunk_size], **decode_kwargs).sample
|
181 |
+
frames.append(frame)
|
182 |
+
frames = torch.cat(frames, dim=0)
|
183 |
+
|
184 |
+
# [batch*frames, channels, height, width] -> [batch, channels, frames, height, width]
|
185 |
+
frames = frames.reshape(-1, num_frames, *frames.shape[1:]).permute(0, 2, 1, 3, 4)
|
186 |
+
|
187 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
188 |
+
frames = frames.float()
|
189 |
+
return frames
|
190 |
+
|
191 |
+
def check_inputs(self, image, height, width):
|
192 |
+
if (
|
193 |
+
not isinstance(image, torch.Tensor)
|
194 |
+
and not isinstance(image, PIL.Image.Image)
|
195 |
+
and not isinstance(image, list)
|
196 |
+
):
|
197 |
+
raise ValueError(
|
198 |
+
"`image` has to be of type `torch.FloatTensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is"
|
199 |
+
f" {type(image)}"
|
200 |
+
)
|
201 |
+
|
202 |
+
if height % 64 != 0 or width % 64 != 0:
|
203 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
204 |
+
|
205 |
+
def prepare_latents(
|
206 |
+
self,
|
207 |
+
shape,
|
208 |
+
dtype,
|
209 |
+
device,
|
210 |
+
generator,
|
211 |
+
latent=None,
|
212 |
+
):
|
213 |
+
if isinstance(generator, list) and len(generator) != shape[0]:
|
214 |
+
raise ValueError(
|
215 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
216 |
+
f" size of {shape[0]}. Make sure the batch size matches the length of the generators."
|
217 |
+
)
|
218 |
+
|
219 |
+
if latent is None:
|
220 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
221 |
+
else:
|
222 |
+
latents = latents.to(device)
|
223 |
+
|
224 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
225 |
+
latents = latents * self.scheduler.init_noise_sigma
|
226 |
+
return latents
|
227 |
+
|
228 |
+
@property
|
229 |
+
def num_timesteps(self):
|
230 |
+
return self._num_timesteps
|
231 |
+
|
232 |
+
@torch.no_grad()
|
233 |
+
def __call__(
|
234 |
+
self,
|
235 |
+
input_image: Union[List[PIL.Image.Image], torch.FloatTensor],
|
236 |
+
height: int = 576,
|
237 |
+
width: int = 768,
|
238 |
+
num_frames: Optional[int] = None,
|
239 |
+
num_inference_steps: int = 10,
|
240 |
+
fps: int = 7,
|
241 |
+
motion_bucket_id: int = 127,
|
242 |
+
noise_aug_strength: float = 0.02,
|
243 |
+
decode_chunk_size: Optional[int] = None,
|
244 |
+
color_map: str="Spectral",
|
245 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
246 |
+
show_progress_bar: bool = True,
|
247 |
+
match_input_res: bool = True,
|
248 |
+
depth_pred_last: Optional[torch.FloatTensor] = None,
|
249 |
+
):
|
250 |
+
assert height >= 0 and width >=0
|
251 |
+
assert num_inference_steps >=1
|
252 |
+
|
253 |
+
num_frames = num_frames if num_frames is not None else self.unet.config.num_frames
|
254 |
+
decode_chunk_size = decode_chunk_size if decode_chunk_size is not None else num_frames
|
255 |
+
|
256 |
+
# 1. Check inputs. Raise error if not correct
|
257 |
+
self.check_inputs(input_image, height, width)
|
258 |
+
|
259 |
+
# 2. Define call parameters
|
260 |
+
if isinstance(input_image, list):
|
261 |
+
batch_size = 1
|
262 |
+
input_size = input_image[0].size
|
263 |
+
elif isinstance(input_image, torch.Tensor):
|
264 |
+
batch_size = input_image.shape[0]
|
265 |
+
input_size = input_image.shape[:-3:-1]
|
266 |
+
assert batch_size == 1, "Batch size must be 1 for now"
|
267 |
+
device = self._execution_device
|
268 |
+
|
269 |
+
# 3. Encode input image
|
270 |
+
image_embeddings = self._encode_image(input_image[0], device)
|
271 |
+
image_embeddings = image_embeddings.repeat((batch_size, 1, 1))
|
272 |
+
|
273 |
+
# NOTE: Stable Diffusion Video was conditioned on fps - 1, which
|
274 |
+
# is why it is reduced here.
|
275 |
+
# See: https://github.com/Stability-AI/generative-models/blob/ed0997173f98eaf8f4edf7ba5fe8f15c6b877fd3/scripts/sampling/simple_video_sample.py#L188
|
276 |
+
fps = fps - 1
|
277 |
+
|
278 |
+
# 4. Encode input image using VAE
|
279 |
+
input_image = self.image_processor.preprocess(input_image, height=height, width=width).to(device)
|
280 |
+
assert input_image.min() >= -1.0 and input_image.max() <= 1.0
|
281 |
+
noise = randn_tensor(input_image.shape, generator=generator, device=device, dtype=input_image.dtype)
|
282 |
+
input_image = input_image + noise_aug_strength * noise
|
283 |
+
if depth_pred_last is not None:
|
284 |
+
depth_pred_last = depth_pred_last.to(device)
|
285 |
+
# resize depth
|
286 |
+
from torchvision.transforms import InterpolationMode
|
287 |
+
from torchvision.transforms.functional import resize
|
288 |
+
depth_pred_last = resize(depth_pred_last.unsqueeze(1), (height, width), InterpolationMode.NEAREST_EXACT, antialias=True)
|
289 |
+
depth_pred_last = repeat(depth_pred_last, 'f c h w ->b f c h w', b=batch_size)
|
290 |
+
|
291 |
+
rgb_batch = repeat(input_image, 'f c h w ->b f c h w', b=batch_size)
|
292 |
+
|
293 |
+
added_time_ids = self._get_add_time_ids(
|
294 |
+
fps,
|
295 |
+
motion_bucket_id,
|
296 |
+
noise_aug_strength,
|
297 |
+
image_embeddings.dtype,
|
298 |
+
batch_size,
|
299 |
+
)
|
300 |
+
added_time_ids = added_time_ids.to(device)
|
301 |
+
|
302 |
+
depth_pred_raw = self.single_infer(rgb_batch,
|
303 |
+
image_embeddings,
|
304 |
+
added_time_ids,
|
305 |
+
num_inference_steps,
|
306 |
+
show_progress_bar,
|
307 |
+
generator,
|
308 |
+
depth_pred_last=depth_pred_last,
|
309 |
+
decode_chunk_size=decode_chunk_size)
|
310 |
+
|
311 |
+
depth_colored_img_list = []
|
312 |
+
depth_frames = []
|
313 |
+
for i in range(num_frames):
|
314 |
+
depth_frame = depth_pred_raw[:, i].squeeze()
|
315 |
+
|
316 |
+
# Convert to numpy
|
317 |
+
depth_frame = depth_frame.cpu().numpy().astype(np.float32)
|
318 |
+
|
319 |
+
if match_input_res:
|
320 |
+
pred_img = Image.fromarray(depth_frame)
|
321 |
+
pred_img = pred_img.resize(input_size, resample=Image.NEAREST)
|
322 |
+
depth_frame = np.asarray(pred_img)
|
323 |
+
|
324 |
+
# Clip output range: current size is the original size
|
325 |
+
depth_frame = depth_frame.clip(0, 1)
|
326 |
+
|
327 |
+
# Colorize
|
328 |
+
depth_colored = plt.get_cmap(color_map)(depth_frame, bytes=True)[..., :3]
|
329 |
+
depth_colored_img = Image.fromarray(depth_colored)
|
330 |
+
|
331 |
+
depth_colored_img_list.append(depth_colored_img)
|
332 |
+
depth_frames.append(depth_frame)
|
333 |
+
|
334 |
+
depth_frame = np.stack(depth_frames)
|
335 |
+
|
336 |
+
self.maybe_free_model_hooks()
|
337 |
+
|
338 |
+
return ChronoDepthOutput(
|
339 |
+
depth_np = depth_frames,
|
340 |
+
depth_colored = depth_colored_img_list,
|
341 |
+
)
|
342 |
+
|
343 |
+
@torch.no_grad()
|
344 |
+
def single_infer(self,
|
345 |
+
input_rgb: torch.Tensor,
|
346 |
+
image_embeddings: torch.Tensor,
|
347 |
+
added_time_ids: torch.Tensor,
|
348 |
+
num_inference_steps: int,
|
349 |
+
show_pbar: bool,
|
350 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]],
|
351 |
+
depth_pred_last: Optional[torch.Tensor] = None,
|
352 |
+
decode_chunk_size=1,
|
353 |
+
):
|
354 |
+
device = input_rgb.device
|
355 |
+
|
356 |
+
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
357 |
+
if needs_upcasting:
|
358 |
+
self.vae.to(dtype=torch.float32)
|
359 |
+
|
360 |
+
rgb_latent = self.encode_RGB(input_rgb)
|
361 |
+
rgb_latent = rgb_latent.to(image_embeddings.dtype)
|
362 |
+
if depth_pred_last is not None:
|
363 |
+
depth_pred_last = depth_pred_last.repeat(1, 1, 3, 1, 1)
|
364 |
+
depth_pred_last_latent = self.encode_RGB(depth_pred_last)
|
365 |
+
depth_pred_last_latent = depth_pred_last_latent.to(image_embeddings.dtype)
|
366 |
+
else:
|
367 |
+
depth_pred_last_latent = None
|
368 |
+
|
369 |
+
# cast back to fp16 if needed
|
370 |
+
if needs_upcasting:
|
371 |
+
self.vae.to(dtype=torch.float16)
|
372 |
+
|
373 |
+
# Prepare timesteps
|
374 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
375 |
+
timesteps = self.scheduler.timesteps
|
376 |
+
|
377 |
+
depth_latent = self.prepare_latents(
|
378 |
+
rgb_latent.shape,
|
379 |
+
image_embeddings.dtype,
|
380 |
+
device,
|
381 |
+
generator
|
382 |
+
)
|
383 |
+
|
384 |
+
if show_pbar:
|
385 |
+
iterable = tqdm(
|
386 |
+
enumerate(timesteps),
|
387 |
+
total=len(timesteps),
|
388 |
+
leave=False,
|
389 |
+
desc=" " * 4 + "Diffusion denoising",
|
390 |
+
)
|
391 |
+
else:
|
392 |
+
iterable = enumerate(timesteps)
|
393 |
+
|
394 |
+
for i, t in iterable:
|
395 |
+
if depth_pred_last_latent is not None:
|
396 |
+
known_frames_num = depth_pred_last_latent.shape[1]
|
397 |
+
epsilon = randn_tensor(
|
398 |
+
depth_pred_last_latent.shape,
|
399 |
+
generator=generator,
|
400 |
+
device=device,
|
401 |
+
dtype=image_embeddings.dtype
|
402 |
+
)
|
403 |
+
depth_latent[:, :known_frames_num] = depth_pred_last_latent + epsilon * self.scheduler.sigmas[i]
|
404 |
+
depth_latent = self.scheduler.scale_model_input(depth_latent, t)
|
405 |
+
unet_input = torch.cat([rgb_latent, depth_latent], dim=2)
|
406 |
+
|
407 |
+
noise_pred = self.unet(
|
408 |
+
unet_input, t, image_embeddings, added_time_ids=added_time_ids
|
409 |
+
)[0]
|
410 |
+
|
411 |
+
# compute the previous noisy sample x_t -> x_t-1
|
412 |
+
depth_latent = self.scheduler.step(noise_pred, t, depth_latent).prev_sample
|
413 |
+
|
414 |
+
torch.cuda.empty_cache()
|
415 |
+
if needs_upcasting:
|
416 |
+
self.vae.to(dtype=torch.float16)
|
417 |
+
depth = self.decode_depth(depth_latent, decode_chunk_size=decode_chunk_size)
|
418 |
+
# clip prediction
|
419 |
+
depth = torch.clip(depth, -1.0, 1.0)
|
420 |
+
# shift to [0, 1]
|
421 |
+
depth = (depth + 1.0) / 2.0
|
422 |
+
|
423 |
+
return depth
|
424 |
+
|
425 |
+
# resizing utils
|
426 |
+
def _resize_with_antialiasing(input, size, interpolation="bicubic", align_corners=True):
|
427 |
+
h, w = input.shape[-2:]
|
428 |
+
factors = (h / size[0], w / size[1])
|
429 |
+
|
430 |
+
# First, we have to determine sigma
|
431 |
+
# Taken from skimage: https://github.com/scikit-image/scikit-image/blob/v0.19.2/skimage/transform/_warps.py#L171
|
432 |
+
sigmas = (
|
433 |
+
max((factors[0] - 1.0) / 2.0, 0.001),
|
434 |
+
max((factors[1] - 1.0) / 2.0, 0.001),
|
435 |
+
)
|
436 |
+
|
437 |
+
# Now kernel size. Good results are for 3 sigma, but that is kind of slow. Pillow uses 1 sigma
|
438 |
+
# https://github.com/python-pillow/Pillow/blob/master/src/libImaging/Resample.c#L206
|
439 |
+
# But they do it in the 2 passes, which gives better results. Let's try 2 sigmas for now
|
440 |
+
ks = int(max(2.0 * 2 * sigmas[0], 3)), int(max(2.0 * 2 * sigmas[1], 3))
|
441 |
+
|
442 |
+
# Make sure it is odd
|
443 |
+
if (ks[0] % 2) == 0:
|
444 |
+
ks = ks[0] + 1, ks[1]
|
445 |
+
|
446 |
+
if (ks[1] % 2) == 0:
|
447 |
+
ks = ks[0], ks[1] + 1
|
448 |
+
|
449 |
+
input = _gaussian_blur2d(input, ks, sigmas)
|
450 |
+
|
451 |
+
output = torch.nn.functional.interpolate(input, size=size, mode=interpolation, align_corners=align_corners)
|
452 |
+
return output
|
453 |
+
|
454 |
+
|
455 |
+
def _compute_padding(kernel_size):
|
456 |
+
"""Compute padding tuple."""
|
457 |
+
# 4 or 6 ints: (padding_left, padding_right,padding_top,padding_bottom)
|
458 |
+
# https://pytorch.org/docs/stable/nn.html#torch.nn.functional.pad
|
459 |
+
if len(kernel_size) < 2:
|
460 |
+
raise AssertionError(kernel_size)
|
461 |
+
computed = [k - 1 for k in kernel_size]
|
462 |
+
|
463 |
+
# for even kernels we need to do asymmetric padding :(
|
464 |
+
out_padding = 2 * len(kernel_size) * [0]
|
465 |
+
|
466 |
+
for i in range(len(kernel_size)):
|
467 |
+
computed_tmp = computed[-(i + 1)]
|
468 |
+
|
469 |
+
pad_front = computed_tmp // 2
|
470 |
+
pad_rear = computed_tmp - pad_front
|
471 |
+
|
472 |
+
out_padding[2 * i + 0] = pad_front
|
473 |
+
out_padding[2 * i + 1] = pad_rear
|
474 |
+
|
475 |
+
return out_padding
|
476 |
+
|
477 |
+
|
478 |
+
def _filter2d(input, kernel):
|
479 |
+
# prepare kernel
|
480 |
+
b, c, h, w = input.shape
|
481 |
+
tmp_kernel = kernel[:, None, ...].to(device=input.device, dtype=input.dtype)
|
482 |
+
|
483 |
+
tmp_kernel = tmp_kernel.expand(-1, c, -1, -1)
|
484 |
+
|
485 |
+
height, width = tmp_kernel.shape[-2:]
|
486 |
+
|
487 |
+
padding_shape: list[int] = _compute_padding([height, width])
|
488 |
+
input = torch.nn.functional.pad(input, padding_shape, mode="reflect")
|
489 |
+
|
490 |
+
# kernel and input tensor reshape to align element-wise or batch-wise params
|
491 |
+
tmp_kernel = tmp_kernel.reshape(-1, 1, height, width)
|
492 |
+
input = input.view(-1, tmp_kernel.size(0), input.size(-2), input.size(-1))
|
493 |
+
|
494 |
+
# convolve the tensor with the kernel.
|
495 |
+
output = torch.nn.functional.conv2d(input, tmp_kernel, groups=tmp_kernel.size(0), padding=0, stride=1)
|
496 |
+
|
497 |
+
out = output.view(b, c, h, w)
|
498 |
+
return out
|
499 |
+
|
500 |
+
|
501 |
+
def _gaussian(window_size: int, sigma):
|
502 |
+
if isinstance(sigma, float):
|
503 |
+
sigma = torch.tensor([[sigma]])
|
504 |
+
|
505 |
+
batch_size = sigma.shape[0]
|
506 |
+
|
507 |
+
x = (torch.arange(window_size, device=sigma.device, dtype=sigma.dtype) - window_size // 2).expand(batch_size, -1)
|
508 |
+
|
509 |
+
if window_size % 2 == 0:
|
510 |
+
x = x + 0.5
|
511 |
+
|
512 |
+
gauss = torch.exp(-x.pow(2.0) / (2 * sigma.pow(2.0)))
|
513 |
+
|
514 |
+
return gauss / gauss.sum(-1, keepdim=True)
|
515 |
+
|
516 |
+
|
517 |
+
def _gaussian_blur2d(input, kernel_size, sigma):
|
518 |
+
if isinstance(sigma, tuple):
|
519 |
+
sigma = torch.tensor([sigma], dtype=input.dtype)
|
520 |
+
else:
|
521 |
+
sigma = sigma.to(dtype=input.dtype)
|
522 |
+
|
523 |
+
ky, kx = int(kernel_size[0]), int(kernel_size[1])
|
524 |
+
bs = sigma.shape[0]
|
525 |
+
kernel_x = _gaussian(kx, sigma[:, 1].view(bs, 1))
|
526 |
+
kernel_y = _gaussian(ky, sigma[:, 0].view(bs, 1))
|
527 |
+
out_x = _filter2d(input, kernel_x[..., None, :])
|
528 |
+
out = _filter2d(out_x, kernel_y[..., None])
|
529 |
+
|
530 |
+
return out
|
gradio_patches/examples.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
|
3 |
+
import gradio
|
4 |
+
from gradio.utils import get_cache_folder
|
5 |
+
|
6 |
+
|
7 |
+
class Examples(gradio.helpers.Examples):
|
8 |
+
def __init__(self, *args, directory_name=None, **kwargs):
|
9 |
+
super().__init__(*args, **kwargs, _initiated_directly=False)
|
10 |
+
if directory_name is not None:
|
11 |
+
self.cached_folder = get_cache_folder() / directory_name
|
12 |
+
self.cached_file = Path(self.cached_folder) / "log.csv"
|
13 |
+
self.create()
|
requirements.txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
spaces
|
2 |
+
gradio>=4.32.1
|
3 |
+
diffusers==0.26.0
|
4 |
+
easydict==1.13
|
5 |
+
einops==0.8.0
|
6 |
+
matplotlib==3.8.4
|
7 |
+
mediapy==1.2.2
|
8 |
+
numpy==1.26.4
|
9 |
+
Pillow==10.3.0
|
10 |
+
torch==2.0.1
|
11 |
+
torchvision==0.15.2
|
12 |
+
tqdm==4.66.2
|
13 |
+
accelerate==0.28.0
|
14 |
+
transformers==4.36.2
|