Spaces:
Running
Running
import gradio as gr | |
from gradio_image_prompter import ImagePrompter | |
from gradio_image_prompter.image_prompter import PromptData | |
from typing import List, Dict, Optional, Union | |
import os | |
import yaml | |
from modules.sam_inference import SamInference | |
from modules.model_downloader import DEFAULT_MODEL_TYPE | |
from modules.paths import (OUTPUT_DIR, OUTPUT_PSD_DIR, SAM2_CONFIGS_DIR, TEMP_DIR) | |
from modules.utils import open_folder | |
from modules.constants import (AUTOMATIC_MODE, BOX_PROMPT_MODE, PIXELIZE_FILTER, COLOR_FILTER, DEFAULT_COLOR, | |
DEFAULT_PIXEL_SIZE) | |
from modules.video_utils import extract_frames, get_frames_from_dir, clean_image_files | |
class App: | |
def __init__(self, | |
args=None): | |
self.demo = gr.Blocks() | |
self.args = args | |
self.sam_inf = SamInference() | |
self.image_modes = [AUTOMATIC_MODE, BOX_PROMPT_MODE] | |
self.default_mode = BOX_PROMPT_MODE | |
self.filter_modes = [PIXELIZE_FILTER, COLOR_FILTER] | |
self.default_filter = PIXELIZE_FILTER | |
self.default_color = DEFAULT_COLOR | |
self.default_pixel_size = DEFAULT_PIXEL_SIZE | |
default_param_config_path = os.path.join(SAM2_CONFIGS_DIR, "default_hparams.yaml") | |
with open(default_param_config_path, 'r') as file: | |
self.hparams = yaml.safe_load(file) | |
def mask_parameters(self, | |
hparams: Optional[Dict] = None): | |
if hparams is None: | |
hparams = self.hparams["mask_hparams"] | |
mask_components = [ | |
gr.Number(label="points_per_side ", value=hparams["points_per_side"], interactive=True), | |
gr.Number(label="points_per_batch ", value=hparams["points_per_batch"], interactive=True), | |
gr.Slider(label="pred_iou_thresh ", value=hparams["pred_iou_thresh"], minimum=0, maximum=1, | |
interactive=True), | |
gr.Slider(label="stability_score_thresh ", value=hparams["stability_score_thresh"], minimum=0, | |
maximum=1, interactive=True), | |
gr.Slider(label="stability_score_offset ", value=hparams["stability_score_offset"], minimum=0, | |
maximum=1), | |
gr.Number(label="crop_n_layers ", value=hparams["crop_n_layers"]), | |
gr.Slider(label="box_nms_thresh ", value=hparams["box_nms_thresh"], minimum=0, maximum=1), | |
gr.Number(label="crop_n_points_downscale_factor ", value=hparams["crop_n_points_downscale_factor"]), | |
gr.Number(label="min_mask_region_area ", value=hparams["min_mask_region_area"]), | |
gr.Checkbox(label="use_m2m ", value=hparams["use_m2m"]) | |
] | |
return mask_components | |
def on_mode_change(mode: str): | |
return [ | |
gr.Image(visible=mode == AUTOMATIC_MODE), | |
ImagePrompter(visible=mode == BOX_PROMPT_MODE), | |
gr.Accordion(visible=mode == AUTOMATIC_MODE), | |
] | |
def on_filter_mode_change(mode: str): | |
return [ | |
gr.ColorPicker(visible=mode == COLOR_FILTER), | |
gr.Number(visible=mode == PIXELIZE_FILTER) | |
] | |
def on_video_model_change(self, | |
model_type: str, | |
vid_input: str): | |
output_temp_dir = TEMP_DIR | |
clean_image_files(output_temp_dir) | |
extract_frames(vid_input=vid_input, output_temp_dir=output_temp_dir) | |
frames = get_frames_from_dir(vid_dir=output_temp_dir) | |
initial_frame, max_frame_index = frames[0], (len(frames)-1) | |
self.sam_inf.init_video_inference_state(vid_input=output_temp_dir, model_type=model_type) | |
return [ | |
ImagePrompter(label="Prompt image with Box & Point", value=initial_frame), | |
gr.Slider(label="Frame Index", value=0, interactive=True, step=1, minimum=0, maximum=max_frame_index) | |
] | |
def on_frame_change(frame_idx: int): | |
temp_dir = TEMP_DIR | |
frames = get_frames_from_dir(vid_dir=temp_dir) | |
selected_frame = frames[frame_idx] | |
return ImagePrompter(label=f"Prompt image with Box & Point", value=selected_frame) | |
def on_prompt_change(prompt: Dict): | |
image, points = prompt["image"], prompt["points"] | |
return gr.Image(label="Preview", value=image) | |
def launch(self): | |
_mask_hparams = self.hparams["mask_hparams"] | |
with self.demo: | |
with gr.Tabs(): | |
with gr.TabItem("Layer Divider"): | |
with gr.Row(): | |
with gr.Column(scale=5): | |
img_input = gr.Image(label="Input image here", visible=self.default_mode == AUTOMATIC_MODE) | |
img_input_prompter = ImagePrompter(label="Prompt image with Box & Point", type='pil', | |
visible=self.default_mode == BOX_PROMPT_MODE) | |
with gr.Column(scale=5): | |
dd_input_modes = gr.Dropdown(label="Image Input Mode", value=self.default_mode, | |
choices=self.image_modes) | |
dd_models = gr.Dropdown(label="Model", value=DEFAULT_MODEL_TYPE, | |
choices=self.sam_inf.available_models) | |
with gr.Accordion("Mask Parameters", open=False, visible=self.default_mode == AUTOMATIC_MODE) as acc_mask_hparams: | |
mask_hparams_component = self.mask_parameters(_mask_hparams) | |
cb_multimask_output = gr.Checkbox(label="multimask_output", value=_mask_hparams["multimask_output"]) | |
with gr.Row(): | |
btn_generate = gr.Button("GENERATE", variant="primary") | |
with gr.Row(): | |
gallery_output = gr.Gallery(label="Output images will be shown here") | |
with gr.Column(): | |
output_file = gr.File(label="Generated psd file", scale=9) | |
btn_open_folder = gr.Button("π\nOpen PSD folder", scale=1) | |
sources = [img_input, img_input_prompter, dd_input_modes] | |
model_params = [dd_models] | |
mask_hparams = mask_hparams_component + [cb_multimask_output] | |
input_params = sources + model_params + mask_hparams | |
btn_generate.click(fn=self.sam_inf.divide_layer, | |
inputs=input_params, outputs=[gallery_output, output_file]) | |
btn_open_folder.click(fn=lambda: open_folder(os.path.join(OUTPUT_PSD_DIR)), | |
inputs=None, outputs=None) | |
dd_input_modes.change(fn=self.on_mode_change, | |
inputs=[dd_input_modes], | |
outputs=[img_input, img_input_prompter, acc_mask_hparams]) | |
with gr.TabItem("Pixelize Filter"): | |
with gr.Column(): | |
file_vid_input = gr.File(label="Input Video here", file_types=['.mp4', '.avi', '.mov', '.wmv', | |
'.flv', '.webm', '.mkv', '.mpeg', | |
'.mpg', '.m4v', '.3gp', '.ts', | |
'.vob']) | |
with gr.Row(equal_height=True): | |
with gr.Column(scale=9): | |
with gr.Row(): | |
vid_frame_prompter = ImagePrompter(label="Prompt image with Box & Point", type='pil', | |
interactive=True, scale=5) | |
img_preview = gr.Image(label="Preview", interactive=False, scale=5) | |
sld_frame_selector = gr.Slider(label="Frame Index", interactive=False) | |
with gr.Column(scale=1): | |
dd_models = gr.Dropdown(label="Model", value=DEFAULT_MODEL_TYPE, | |
choices=self.sam_inf.available_models) | |
dd_filter_mode = gr.Dropdown(label="Filter Modes", interactive=True, | |
value=self.default_filter, | |
choices=self.filter_modes) | |
cp_color_picker = gr.ColorPicker(label="Solid Color", interactive=True, | |
visible=self.default_filter == COLOR_FILTER, | |
value=self.default_color) | |
nb_pixel_size = gr.Number(label="Pixel Size", interactive=True, minimum=1, | |
visible=self.default_filter == PIXELIZE_FILTER, | |
value=self.default_pixel_size) | |
btn_generate_preview = gr.Button("GENERATE PREVIEW") | |
with gr.Row(): | |
btn_generate = gr.Button("GENERATE", variant="primary") | |
with gr.Row(): | |
gallery_output = gr.Gallery(label="Output images will be shown here") | |
with gr.Column(): | |
output_file = gr.File(label="Generated psd file", scale=9) | |
btn_open_folder = gr.Button("π\nOpen PSD folder", scale=1) | |
file_vid_input.change(fn=self.on_video_model_change, | |
inputs=[dd_models, file_vid_input], | |
outputs=[vid_frame_prompter, sld_frame_selector]) | |
dd_models.change(fn=self.on_video_model_change, | |
inputs=[dd_models, file_vid_input], | |
outputs=[vid_frame_prompter, sld_frame_selector]) | |
sld_frame_selector.change(fn=self.on_frame_change, | |
inputs=[sld_frame_selector], | |
outputs=[vid_frame_prompter],) | |
dd_filter_mode.change(fn=self.on_filter_mode_change, | |
inputs=[dd_filter_mode], | |
outputs=[cp_color_picker, | |
nb_pixel_size]) | |
preview_params = [vid_frame_prompter, dd_filter_mode, sld_frame_selector, nb_pixel_size, cp_color_picker] | |
btn_generate_preview.click(fn=self.sam_inf.add_filter_to_preview, | |
inputs=preview_params, | |
outputs=[img_preview]) | |
btn_generate.click(fn=self.sam_inf.add_filter_to_video, | |
inputs=preview_params, | |
outputs=None) | |
self.demo.queue().launch(inbrowser=True) | |
if __name__ == "__main__": | |
demo = App() | |
demo.launch() | |