sam2-playground / app.py
jhj0517
Add video propagation
e56e825
raw
history blame
11.5 kB
import gradio as gr
from gradio_image_prompter import ImagePrompter
from gradio_image_prompter.image_prompter import PromptData
from typing import List, Dict, Optional, Union
import os
import yaml
from modules.sam_inference import SamInference
from modules.model_downloader import DEFAULT_MODEL_TYPE
from modules.paths import (OUTPUT_DIR, OUTPUT_PSD_DIR, SAM2_CONFIGS_DIR, TEMP_DIR)
from modules.utils import open_folder
from modules.constants import (AUTOMATIC_MODE, BOX_PROMPT_MODE, PIXELIZE_FILTER, COLOR_FILTER, DEFAULT_COLOR,
DEFAULT_PIXEL_SIZE)
from modules.video_utils import extract_frames, get_frames_from_dir, clean_image_files
class App:
def __init__(self,
args=None):
self.demo = gr.Blocks()
self.args = args
self.sam_inf = SamInference()
self.image_modes = [AUTOMATIC_MODE, BOX_PROMPT_MODE]
self.default_mode = BOX_PROMPT_MODE
self.filter_modes = [PIXELIZE_FILTER, COLOR_FILTER]
self.default_filter = PIXELIZE_FILTER
self.default_color = DEFAULT_COLOR
self.default_pixel_size = DEFAULT_PIXEL_SIZE
default_param_config_path = os.path.join(SAM2_CONFIGS_DIR, "default_hparams.yaml")
with open(default_param_config_path, 'r') as file:
self.hparams = yaml.safe_load(file)
def mask_parameters(self,
hparams: Optional[Dict] = None):
if hparams is None:
hparams = self.hparams["mask_hparams"]
mask_components = [
gr.Number(label="points_per_side ", value=hparams["points_per_side"], interactive=True),
gr.Number(label="points_per_batch ", value=hparams["points_per_batch"], interactive=True),
gr.Slider(label="pred_iou_thresh ", value=hparams["pred_iou_thresh"], minimum=0, maximum=1,
interactive=True),
gr.Slider(label="stability_score_thresh ", value=hparams["stability_score_thresh"], minimum=0,
maximum=1, interactive=True),
gr.Slider(label="stability_score_offset ", value=hparams["stability_score_offset"], minimum=0,
maximum=1),
gr.Number(label="crop_n_layers ", value=hparams["crop_n_layers"]),
gr.Slider(label="box_nms_thresh ", value=hparams["box_nms_thresh"], minimum=0, maximum=1),
gr.Number(label="crop_n_points_downscale_factor ", value=hparams["crop_n_points_downscale_factor"]),
gr.Number(label="min_mask_region_area ", value=hparams["min_mask_region_area"]),
gr.Checkbox(label="use_m2m ", value=hparams["use_m2m"])
]
return mask_components
@staticmethod
def on_mode_change(mode: str):
return [
gr.Image(visible=mode == AUTOMATIC_MODE),
ImagePrompter(visible=mode == BOX_PROMPT_MODE),
gr.Accordion(visible=mode == AUTOMATIC_MODE),
]
@staticmethod
def on_filter_mode_change(mode: str):
return [
gr.ColorPicker(visible=mode == COLOR_FILTER),
gr.Number(visible=mode == PIXELIZE_FILTER)
]
def on_video_model_change(self,
model_type: str,
vid_input: str):
output_temp_dir = TEMP_DIR
clean_image_files(output_temp_dir)
extract_frames(vid_input=vid_input, output_temp_dir=output_temp_dir)
frames = get_frames_from_dir(vid_dir=output_temp_dir)
initial_frame, max_frame_index = frames[0], (len(frames)-1)
self.sam_inf.init_video_inference_state(vid_input=output_temp_dir, model_type=model_type)
return [
ImagePrompter(label="Prompt image with Box & Point", value=initial_frame),
gr.Slider(label="Frame Index", value=0, interactive=True, step=1, minimum=0, maximum=max_frame_index)
]
@staticmethod
def on_frame_change(frame_idx: int):
temp_dir = TEMP_DIR
frames = get_frames_from_dir(vid_dir=temp_dir)
selected_frame = frames[frame_idx]
return ImagePrompter(label=f"Prompt image with Box & Point", value=selected_frame)
@staticmethod
def on_prompt_change(prompt: Dict):
image, points = prompt["image"], prompt["points"]
return gr.Image(label="Preview", value=image)
def launch(self):
_mask_hparams = self.hparams["mask_hparams"]
with self.demo:
with gr.Tabs():
with gr.TabItem("Layer Divider"):
with gr.Row():
with gr.Column(scale=5):
img_input = gr.Image(label="Input image here", visible=self.default_mode == AUTOMATIC_MODE)
img_input_prompter = ImagePrompter(label="Prompt image with Box & Point", type='pil',
visible=self.default_mode == BOX_PROMPT_MODE)
with gr.Column(scale=5):
dd_input_modes = gr.Dropdown(label="Image Input Mode", value=self.default_mode,
choices=self.image_modes)
dd_models = gr.Dropdown(label="Model", value=DEFAULT_MODEL_TYPE,
choices=self.sam_inf.available_models)
with gr.Accordion("Mask Parameters", open=False, visible=self.default_mode == AUTOMATIC_MODE) as acc_mask_hparams:
mask_hparams_component = self.mask_parameters(_mask_hparams)
cb_multimask_output = gr.Checkbox(label="multimask_output", value=_mask_hparams["multimask_output"])
with gr.Row():
btn_generate = gr.Button("GENERATE", variant="primary")
with gr.Row():
gallery_output = gr.Gallery(label="Output images will be shown here")
with gr.Column():
output_file = gr.File(label="Generated psd file", scale=9)
btn_open_folder = gr.Button("πŸ“\nOpen PSD folder", scale=1)
sources = [img_input, img_input_prompter, dd_input_modes]
model_params = [dd_models]
mask_hparams = mask_hparams_component + [cb_multimask_output]
input_params = sources + model_params + mask_hparams
btn_generate.click(fn=self.sam_inf.divide_layer,
inputs=input_params, outputs=[gallery_output, output_file])
btn_open_folder.click(fn=lambda: open_folder(os.path.join(OUTPUT_PSD_DIR)),
inputs=None, outputs=None)
dd_input_modes.change(fn=self.on_mode_change,
inputs=[dd_input_modes],
outputs=[img_input, img_input_prompter, acc_mask_hparams])
with gr.TabItem("Pixelize Filter"):
with gr.Column():
file_vid_input = gr.File(label="Input Video here", file_types=['.mp4', '.avi', '.mov', '.wmv',
'.flv', '.webm', '.mkv', '.mpeg',
'.mpg', '.m4v', '.3gp', '.ts',
'.vob'])
with gr.Row(equal_height=True):
with gr.Column(scale=9):
with gr.Row():
vid_frame_prompter = ImagePrompter(label="Prompt image with Box & Point", type='pil',
interactive=True, scale=5)
img_preview = gr.Image(label="Preview", interactive=False, scale=5)
sld_frame_selector = gr.Slider(label="Frame Index", interactive=False)
with gr.Column(scale=1):
dd_models = gr.Dropdown(label="Model", value=DEFAULT_MODEL_TYPE,
choices=self.sam_inf.available_models)
dd_filter_mode = gr.Dropdown(label="Filter Modes", interactive=True,
value=self.default_filter,
choices=self.filter_modes)
cp_color_picker = gr.ColorPicker(label="Solid Color", interactive=True,
visible=self.default_filter == COLOR_FILTER,
value=self.default_color)
nb_pixel_size = gr.Number(label="Pixel Size", interactive=True, minimum=1,
visible=self.default_filter == PIXELIZE_FILTER,
value=self.default_pixel_size)
btn_generate_preview = gr.Button("GENERATE PREVIEW")
with gr.Row():
btn_generate = gr.Button("GENERATE", variant="primary")
with gr.Row():
gallery_output = gr.Gallery(label="Output images will be shown here")
with gr.Column():
output_file = gr.File(label="Generated psd file", scale=9)
btn_open_folder = gr.Button("πŸ“\nOpen PSD folder", scale=1)
file_vid_input.change(fn=self.on_video_model_change,
inputs=[dd_models, file_vid_input],
outputs=[vid_frame_prompter, sld_frame_selector])
dd_models.change(fn=self.on_video_model_change,
inputs=[dd_models, file_vid_input],
outputs=[vid_frame_prompter, sld_frame_selector])
sld_frame_selector.change(fn=self.on_frame_change,
inputs=[sld_frame_selector],
outputs=[vid_frame_prompter],)
dd_filter_mode.change(fn=self.on_filter_mode_change,
inputs=[dd_filter_mode],
outputs=[cp_color_picker,
nb_pixel_size])
preview_params = [vid_frame_prompter, dd_filter_mode, sld_frame_selector, nb_pixel_size, cp_color_picker]
btn_generate_preview.click(fn=self.sam_inf.add_filter_to_preview,
inputs=preview_params,
outputs=[img_preview])
btn_generate.click(fn=self.sam_inf.add_filter_to_video,
inputs=preview_params,
outputs=None)
self.demo.queue().launch(inbrowser=True)
if __name__ == "__main__":
demo = App()
demo.launch()