Spaces:
Running
Running
Merge pull request #214 from jhj0517/fix/limit-vad
Browse files- app.py +2 -2
- modules/diarize/audio_loader.py +2 -0
- modules/diarize/diarize_pipeline.py +2 -0
- modules/vad/silero_vad.py +12 -53
- modules/whisper/faster_whisper_inference.py +17 -1
- modules/whisper/whisper_base.py +0 -15
app.py
CHANGED
@@ -73,7 +73,7 @@ class App:
|
|
73 |
cb_timestamp = gr.Checkbox(value=True, label="Add a timestamp to the end of the filename",
|
74 |
interactive=True)
|
75 |
with gr.Accordion("Advanced Parameters", open=False):
|
76 |
-
nb_beam_size = gr.Number(label="Beam Size", value=
|
77 |
info="Beam size to use for decoding.")
|
78 |
nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=-1.0, interactive=True,
|
79 |
info="If the average log probability over sampled tokens is below this value, treat as failed.")
|
@@ -137,7 +137,7 @@ class App:
|
|
137 |
nb_chunk_length_s = gr.Number(label="Chunk Lengths (sec)", value=30, precision=0)
|
138 |
nb_batch_size = gr.Number(label="Batch Size", value=24, precision=0)
|
139 |
|
140 |
-
with gr.Accordion("VAD", open=False):
|
141 |
cb_vad_filter = gr.Checkbox(label="Enable Silero VAD Filter", value=False, interactive=True)
|
142 |
sd_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold", value=0.5,
|
143 |
info="Lower it to be more sensitive to small sounds.")
|
|
|
73 |
cb_timestamp = gr.Checkbox(value=True, label="Add a timestamp to the end of the filename",
|
74 |
interactive=True)
|
75 |
with gr.Accordion("Advanced Parameters", open=False):
|
76 |
+
nb_beam_size = gr.Number(label="Beam Size", value=5, precision=0, interactive=True,
|
77 |
info="Beam size to use for decoding.")
|
78 |
nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=-1.0, interactive=True,
|
79 |
info="If the average log probability over sampled tokens is below this value, treat as failed.")
|
|
|
137 |
nb_chunk_length_s = gr.Number(label="Chunk Lengths (sec)", value=30, precision=0)
|
138 |
nb_batch_size = gr.Number(label="Batch Size", value=24, precision=0)
|
139 |
|
140 |
+
with gr.Accordion("VAD", open=False, visible=isinstance(self.whisper_inf, FasterWhisperInference)):
|
141 |
cb_vad_filter = gr.Checkbox(label="Enable Silero VAD Filter", value=False, interactive=True)
|
142 |
sd_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold", value=0.5,
|
143 |
info="Lower it to be more sensitive to small sounds.")
|
modules/diarize/audio_loader.py
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
import os
|
2 |
import subprocess
|
3 |
from functools import lru_cache
|
|
|
1 |
+
# Adapted from https://github.com/m-bain/whisperX/blob/main/whisperx/audio.py
|
2 |
+
|
3 |
import os
|
4 |
import subprocess
|
5 |
from functools import lru_cache
|
modules/diarize/diarize_pipeline.py
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
import numpy as np
|
2 |
import pandas as pd
|
3 |
import os
|
|
|
1 |
+
# Adapted from https://github.com/m-bain/whisperX/blob/main/whisperx/diarize.py
|
2 |
+
|
3 |
import numpy as np
|
4 |
import pandas as pd
|
5 |
import os
|
modules/vad/silero_vad.py
CHANGED
@@ -1,6 +1,8 @@
|
|
|
|
|
|
1 |
from faster_whisper.vad import VadOptions, get_vad_model
|
2 |
import numpy as np
|
3 |
-
from typing import BinaryIO, Union, List, Optional
|
4 |
import warnings
|
5 |
import faster_whisper
|
6 |
import gradio as gr
|
@@ -15,7 +17,6 @@ class SileroVAD:
|
|
15 |
def run(self,
|
16 |
audio: Union[str, BinaryIO, np.ndarray],
|
17 |
vad_parameters: VadOptions,
|
18 |
-
silence_non_speech: bool = True,
|
19 |
progress: gr.Progress = gr.Progress()):
|
20 |
"""
|
21 |
Run VAD
|
@@ -26,8 +27,6 @@ class SileroVAD:
|
|
26 |
Audio path or file binary or Audio numpy array
|
27 |
vad_parameters:
|
28 |
Options for VAD processing.
|
29 |
-
silence_non_speech: bool
|
30 |
-
If True, non-speech parts will be silenced instead of being removed.
|
31 |
progress: gr.Progress
|
32 |
Indicator to show progress directly in gradio.
|
33 |
|
@@ -43,32 +42,19 @@ class SileroVAD:
|
|
43 |
audio = faster_whisper.decode_audio(audio, sampling_rate=sampling_rate)
|
44 |
|
45 |
duration = audio.shape[0] / sampling_rate
|
|
|
46 |
|
47 |
if vad_parameters is None:
|
48 |
vad_parameters = VadOptions()
|
49 |
elif isinstance(vad_parameters, dict):
|
50 |
vad_parameters = VadOptions(**vad_parameters)
|
51 |
-
|
52 |
speech_chunks = self.get_speech_timestamps(
|
53 |
audio=audio,
|
54 |
vad_options=vad_parameters,
|
55 |
progress=progress
|
56 |
)
|
57 |
-
|
58 |
-
|
59 |
-
audio=audio,
|
60 |
-
chunks=speech_chunks,
|
61 |
-
silence_non_speech=silence_non_speech
|
62 |
-
)
|
63 |
-
|
64 |
-
if silence_non_speech:
|
65 |
-
print(
|
66 |
-
f"VAD filter silenced {self.format_timestamp(duration_diff)} of audio.",
|
67 |
-
)
|
68 |
-
else:
|
69 |
-
print(
|
70 |
-
f"VAD filter removed {self.format_timestamp(duration_diff)} of audio",
|
71 |
-
)
|
72 |
|
73 |
return audio
|
74 |
|
@@ -224,41 +210,13 @@ class SileroVAD:
|
|
224 |
def update_model(self):
|
225 |
self.model = get_vad_model()
|
226 |
|
227 |
-
|
228 |
-
|
229 |
-
audio
|
230 |
-
chunks: List[dict],
|
231 |
-
silence_non_speech: bool = True,
|
232 |
-
) -> Tuple[np.ndarray, float]:
|
233 |
-
"""Collects and concatenate audio chunks.
|
234 |
-
|
235 |
-
Args:
|
236 |
-
audio: One dimensional float array.
|
237 |
-
chunks: List of dictionaries containing start and end samples of speech chunks
|
238 |
-
silence_non_speech: If True, non-speech parts will be silenced instead of being removed.
|
239 |
-
|
240 |
-
Returns:
|
241 |
-
Tuple containing:
|
242 |
-
- Processed audio as a numpy array
|
243 |
-
- Duration of non-speech (silenced or removed) audio in seconds
|
244 |
-
"""
|
245 |
if not chunks:
|
246 |
-
return np.array([], dtype=np.float32)
|
247 |
-
|
248 |
-
total_samples = audio.shape[0]
|
249 |
-
speech_samples_count = sum(chunk["end"] - chunk["start"] for chunk in chunks)
|
250 |
-
non_speech_samples_count = total_samples - speech_samples_count
|
251 |
-
non_speech_duration = non_speech_samples_count / self.sampling_rate
|
252 |
|
253 |
-
|
254 |
-
processed_audio = np.concatenate([audio[chunk["start"]: chunk["end"]] for chunk in chunks])
|
255 |
-
else:
|
256 |
-
processed_audio = np.zeros_like(audio)
|
257 |
-
for chunk in chunks:
|
258 |
-
start, end = chunk['start'], chunk['end']
|
259 |
-
processed_audio[start:end] = audio[start:end]
|
260 |
-
|
261 |
-
return processed_audio, non_speech_duration
|
262 |
|
263 |
@staticmethod
|
264 |
def format_timestamp(
|
@@ -282,3 +240,4 @@ class SileroVAD:
|
|
282 |
return (
|
283 |
f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
|
284 |
)
|
|
|
|
1 |
+
# Adapted from https://github.com/SYSTRAN/faster-whisper/blob/master/faster_whisper/vad.py
|
2 |
+
|
3 |
from faster_whisper.vad import VadOptions, get_vad_model
|
4 |
import numpy as np
|
5 |
+
from typing import BinaryIO, Union, List, Optional
|
6 |
import warnings
|
7 |
import faster_whisper
|
8 |
import gradio as gr
|
|
|
17 |
def run(self,
|
18 |
audio: Union[str, BinaryIO, np.ndarray],
|
19 |
vad_parameters: VadOptions,
|
|
|
20 |
progress: gr.Progress = gr.Progress()):
|
21 |
"""
|
22 |
Run VAD
|
|
|
27 |
Audio path or file binary or Audio numpy array
|
28 |
vad_parameters:
|
29 |
Options for VAD processing.
|
|
|
|
|
30 |
progress: gr.Progress
|
31 |
Indicator to show progress directly in gradio.
|
32 |
|
|
|
42 |
audio = faster_whisper.decode_audio(audio, sampling_rate=sampling_rate)
|
43 |
|
44 |
duration = audio.shape[0] / sampling_rate
|
45 |
+
duration_after_vad = duration
|
46 |
|
47 |
if vad_parameters is None:
|
48 |
vad_parameters = VadOptions()
|
49 |
elif isinstance(vad_parameters, dict):
|
50 |
vad_parameters = VadOptions(**vad_parameters)
|
|
|
51 |
speech_chunks = self.get_speech_timestamps(
|
52 |
audio=audio,
|
53 |
vad_options=vad_parameters,
|
54 |
progress=progress
|
55 |
)
|
56 |
+
audio = self.collect_chunks(audio, speech_chunks)
|
57 |
+
duration_after_vad = audio.shape[0] / sampling_rate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
return audio
|
60 |
|
|
|
210 |
def update_model(self):
|
211 |
self.model = get_vad_model()
|
212 |
|
213 |
+
@staticmethod
|
214 |
+
def collect_chunks(audio: np.ndarray, chunks: List[dict]) -> np.ndarray:
|
215 |
+
"""Collects and concatenates audio chunks."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
if not chunks:
|
217 |
+
return np.array([], dtype=np.float32)
|
|
|
|
|
|
|
|
|
|
|
218 |
|
219 |
+
return np.concatenate([audio[chunk["start"]: chunk["end"]] for chunk in chunks])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
|
221 |
@staticmethod
|
222 |
def format_timestamp(
|
|
|
240 |
return (
|
241 |
f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
|
242 |
)
|
243 |
+
|
modules/whisper/faster_whisper_inference.py
CHANGED
@@ -71,6 +71,20 @@ class FasterWhisperInference(WhisperBase):
|
|
71 |
if not params.hotwords:
|
72 |
params.hotwords = None
|
73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
params.suppress_tokens = self.format_suppress_tokens_str(params.suppress_tokens)
|
75 |
|
76 |
segments, info = self.model.transcribe(
|
@@ -100,7 +114,9 @@ class FasterWhisperInference(WhisperBase):
|
|
100 |
hotwords=params.hotwords,
|
101 |
language_detection_threshold=params.language_detection_threshold,
|
102 |
language_detection_segments=params.language_detection_segments,
|
103 |
-
prompt_reset_on_temperature=params.prompt_reset_on_temperature
|
|
|
|
|
104 |
)
|
105 |
progress(0, desc="Loading audio..")
|
106 |
|
|
|
71 |
if not params.hotwords:
|
72 |
params.hotwords = None
|
73 |
|
74 |
+
vad_options = None
|
75 |
+
if params.vad_filter:
|
76 |
+
# Explicit value set for float('inf') from gr.Number()
|
77 |
+
if params.max_speech_duration_s >= 9999:
|
78 |
+
params.max_speech_duration_s = float('inf')
|
79 |
+
|
80 |
+
vad_options = VadOptions(
|
81 |
+
threshold=params.threshold,
|
82 |
+
min_speech_duration_ms=params.min_speech_duration_ms,
|
83 |
+
max_speech_duration_s=params.max_speech_duration_s,
|
84 |
+
min_silence_duration_ms=params.min_silence_duration_ms,
|
85 |
+
speech_pad_ms=params.speech_pad_ms
|
86 |
+
)
|
87 |
+
|
88 |
params.suppress_tokens = self.format_suppress_tokens_str(params.suppress_tokens)
|
89 |
|
90 |
segments, info = self.model.transcribe(
|
|
|
114 |
hotwords=params.hotwords,
|
115 |
language_detection_threshold=params.language_detection_threshold,
|
116 |
language_detection_segments=params.language_detection_segments,
|
117 |
+
prompt_reset_on_temperature=params.prompt_reset_on_temperature,
|
118 |
+
vad_filter=params.vad_filter,
|
119 |
+
vad_parameters=vad_options
|
120 |
)
|
121 |
progress(0, desc="Loading audio..")
|
122 |
|
modules/whisper/whisper_base.py
CHANGED
@@ -85,21 +85,6 @@ class WhisperBase(ABC):
|
|
85 |
"""
|
86 |
params = WhisperParameters.as_value(*whisper_params)
|
87 |
|
88 |
-
if params.vad_filter:
|
89 |
-
vad_options = VadOptions(
|
90 |
-
threshold=params.threshold,
|
91 |
-
min_speech_duration_ms=params.min_speech_duration_ms,
|
92 |
-
max_speech_duration_s=params.max_speech_duration_s,
|
93 |
-
min_silence_duration_ms=params.min_silence_duration_ms,
|
94 |
-
speech_pad_ms=params.speech_pad_ms
|
95 |
-
)
|
96 |
-
audio = self.vad.run(
|
97 |
-
audio=audio,
|
98 |
-
vad_parameters=vad_options,
|
99 |
-
silence_non_speech=True,
|
100 |
-
progress=progress
|
101 |
-
)
|
102 |
-
|
103 |
if params.lang == "Automatic Detection":
|
104 |
params.lang = None
|
105 |
else:
|
|
|
85 |
"""
|
86 |
params = WhisperParameters.as_value(*whisper_params)
|
87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
if params.lang == "Automatic Detection":
|
89 |
params.lang = None
|
90 |
else:
|