Spaces:
Running
Running
jhj0517
commited on
Commit
·
595b5f3
1
Parent(s):
6148cfe
add diarization
Browse files- modules/diarize_pipeline.py +91 -0
- modules/diarizer.py +122 -0
- modules/whisper_base.py +34 -70
modules/diarize_pipeline.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
from pyannote.audio import Pipeline
|
4 |
+
from typing import Optional, Union
|
5 |
+
import torch
|
6 |
+
import whisperx
|
7 |
+
import os
|
8 |
+
|
9 |
+
|
10 |
+
class DiarizationPipeline:
|
11 |
+
def __init__(
|
12 |
+
self,
|
13 |
+
model_name="pyannote/speaker-diarization-3.1",
|
14 |
+
cache_dir: str = os.path.join("models", "Whisper", "whisperx"),
|
15 |
+
use_auth_token=None,
|
16 |
+
device: Optional[Union[str, torch.device]] = "cpu",
|
17 |
+
):
|
18 |
+
if isinstance(device, str):
|
19 |
+
device = torch.device(device)
|
20 |
+
self.model = Pipeline.from_pretrained(
|
21 |
+
model_name,
|
22 |
+
use_auth_token=use_auth_token,
|
23 |
+
cache_dir=cache_dir
|
24 |
+
).to(device)
|
25 |
+
|
26 |
+
def __call__(self, audio: Union[str, np.ndarray], min_speakers=None, max_speakers=None):
|
27 |
+
if isinstance(audio, str):
|
28 |
+
audio = whisperx.load_audio(audio)
|
29 |
+
audio_data = {
|
30 |
+
'waveform': torch.from_numpy(audio[None, :]),
|
31 |
+
'sample_rate': whisperx.audio.SAMPLE_RATE
|
32 |
+
}
|
33 |
+
segments = self.model(audio_data, min_speakers=min_speakers, max_speakers=max_speakers)
|
34 |
+
diarize_df = pd.DataFrame(segments.itertracks(yield_label=True), columns=['segment', 'label', 'speaker'])
|
35 |
+
diarize_df['start'] = diarize_df['segment'].apply(lambda x: x.start)
|
36 |
+
diarize_df['end'] = diarize_df['segment'].apply(lambda x: x.end)
|
37 |
+
return diarize_df
|
38 |
+
|
39 |
+
|
40 |
+
def assign_word_speakers(diarize_df, transcript_result, fill_nearest=False):
|
41 |
+
transcript_segments = transcript_result["segments"]
|
42 |
+
for seg in transcript_segments:
|
43 |
+
# assign speaker to segment (if any)
|
44 |
+
diarize_df['intersection'] = np.minimum(diarize_df['end'], seg['end']) - np.maximum(diarize_df['start'],
|
45 |
+
seg['start'])
|
46 |
+
diarize_df['union'] = np.maximum(diarize_df['end'], seg['end']) - np.minimum(diarize_df['start'], seg['start'])
|
47 |
+
|
48 |
+
intersected = diarize_df[diarize_df["intersection"] > 0]
|
49 |
+
|
50 |
+
speaker = None
|
51 |
+
if len(intersected) > 0:
|
52 |
+
# Choosing most strong intersection
|
53 |
+
speaker = intersected.groupby("speaker")["intersection"].sum().sort_values(ascending=False).index[0]
|
54 |
+
elif fill_nearest:
|
55 |
+
# Otherwise choosing closest
|
56 |
+
speaker = diarize_df.sort_values(by=["intersection"], ascending=False)["speaker"].values[0]
|
57 |
+
|
58 |
+
if speaker is not None:
|
59 |
+
seg["speaker"] = speaker
|
60 |
+
|
61 |
+
# assign speaker to words
|
62 |
+
if 'words' in seg:
|
63 |
+
for word in seg['words']:
|
64 |
+
if 'start' in word:
|
65 |
+
diarize_df['intersection'] = np.minimum(diarize_df['end'], word['end']) - np.maximum(
|
66 |
+
diarize_df['start'], word['start'])
|
67 |
+
diarize_df['union'] = np.maximum(diarize_df['end'], word['end']) - np.minimum(diarize_df['start'],
|
68 |
+
word['start'])
|
69 |
+
|
70 |
+
intersected = diarize_df[diarize_df["intersection"] > 0]
|
71 |
+
|
72 |
+
word_speaker = None
|
73 |
+
if len(intersected) > 0:
|
74 |
+
# Choosing most strong intersection
|
75 |
+
word_speaker = \
|
76 |
+
intersected.groupby("speaker")["intersection"].sum().sort_values(ascending=False).index[0]
|
77 |
+
elif fill_nearest:
|
78 |
+
# Otherwise choosing closest
|
79 |
+
word_speaker = diarize_df.sort_values(by=["intersection"], ascending=False)["speaker"].values[0]
|
80 |
+
|
81 |
+
if word_speaker is not None:
|
82 |
+
word["speaker"] = word_speaker
|
83 |
+
|
84 |
+
return transcript_result
|
85 |
+
|
86 |
+
|
87 |
+
class Segment:
|
88 |
+
def __init__(self, start, end, speaker=None):
|
89 |
+
self.start = start
|
90 |
+
self.end = end
|
91 |
+
self.speaker = speaker
|
modules/diarizer.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import whisperx
|
3 |
+
import torch
|
4 |
+
from typing import List
|
5 |
+
import time
|
6 |
+
|
7 |
+
from modules.diarize_pipeline import DiarizationPipeline
|
8 |
+
|
9 |
+
|
10 |
+
class Diarizer:
|
11 |
+
def __init__(self,
|
12 |
+
model_dir: str = os.path.join("models", "Whisper", "whisperx")
|
13 |
+
):
|
14 |
+
self.device = self.get_device()
|
15 |
+
self.available_device = self.get_available_device()
|
16 |
+
self.compute_type = "float16"
|
17 |
+
self.model_dir = model_dir
|
18 |
+
os.makedirs(self.model_dir, exist_ok=True)
|
19 |
+
self.pipe = None
|
20 |
+
|
21 |
+
def run(self,
|
22 |
+
audio: str,
|
23 |
+
transcribed_result: List[dict],
|
24 |
+
use_auth_token: str,
|
25 |
+
device: str
|
26 |
+
):
|
27 |
+
"""
|
28 |
+
Diarize transcribed result as a post-processing
|
29 |
+
|
30 |
+
Parameters
|
31 |
+
----------
|
32 |
+
audio: Union[str, BinaryIO, np.ndarray]
|
33 |
+
Audio input. This can be file path or binary type.
|
34 |
+
transcribed_result: List[dict]
|
35 |
+
transcribed result through whisper.
|
36 |
+
use_auth_token: str
|
37 |
+
Huggingface token with READ permission. This is only needed the first time you download the model.
|
38 |
+
You must manually go to the website https://huggingface.co/pyannote/speaker-diarization-3.1 and agree to their TOS to download the model.
|
39 |
+
device: str
|
40 |
+
Device for diarization.
|
41 |
+
|
42 |
+
Returns
|
43 |
+
----------
|
44 |
+
segments_result: List[dict]
|
45 |
+
list of dicts that includes start, end timestamps and transcribed text
|
46 |
+
elapsed_time: float
|
47 |
+
elapsed time for running
|
48 |
+
"""
|
49 |
+
start_time = time.time()
|
50 |
+
|
51 |
+
if (device != self.device
|
52 |
+
or self.pipe is None):
|
53 |
+
self.update_pipe(
|
54 |
+
device=device,
|
55 |
+
use_auth_token=use_auth_token
|
56 |
+
)
|
57 |
+
|
58 |
+
audio = whisperx.load_audio(audio)
|
59 |
+
diarization_segments = self.pipe(audio)
|
60 |
+
diarized_result = whisperx.assign_word_speakers(
|
61 |
+
diarization_segments,
|
62 |
+
{"segments": transcribed_result}
|
63 |
+
)
|
64 |
+
|
65 |
+
for segment in diarized_result["segments"]:
|
66 |
+
speaker = "None"
|
67 |
+
if "speaker" in segment:
|
68 |
+
speaker = segment["speaker"]
|
69 |
+
segment["text"] = speaker + "|" + segment["text"][1:]
|
70 |
+
|
71 |
+
elapsed_time = time.time() - start_time
|
72 |
+
return diarized_result["segments"], elapsed_time
|
73 |
+
|
74 |
+
def update_pipe(self,
|
75 |
+
use_auth_token: str,
|
76 |
+
device: str
|
77 |
+
):
|
78 |
+
"""
|
79 |
+
Set pipeline for diarization
|
80 |
+
|
81 |
+
Parameters
|
82 |
+
----------
|
83 |
+
use_auth_token: str
|
84 |
+
Huggingface token with READ permission. This is only needed the first time you download the model.
|
85 |
+
You must manually go to the website https://huggingface.co/pyannote/speaker-diarization-3.1 and agree to their TOS to download the model.
|
86 |
+
device: str
|
87 |
+
Device for diarization.
|
88 |
+
"""
|
89 |
+
|
90 |
+
os.makedirs(self.model_dir, exist_ok=True)
|
91 |
+
|
92 |
+
if (not os.listdir(self.model_dir) and
|
93 |
+
not use_auth_token):
|
94 |
+
print(
|
95 |
+
"\nFailed to diarize. You need huggingface token and agree to their requirements to download the diarization model.\n"
|
96 |
+
"Go to \"https://huggingface.co/pyannote/speaker-diarization-3.1\" and follow their instructions to download the model.\n"
|
97 |
+
)
|
98 |
+
return
|
99 |
+
|
100 |
+
self.pipe = DiarizationPipeline(
|
101 |
+
use_auth_token=use_auth_token,
|
102 |
+
device=device,
|
103 |
+
cache_dir=self.model_dir
|
104 |
+
)
|
105 |
+
|
106 |
+
@staticmethod
|
107 |
+
def get_device():
|
108 |
+
if torch.cuda.is_available():
|
109 |
+
return "cuda"
|
110 |
+
elif torch.backends.mps.is_available():
|
111 |
+
return "mps"
|
112 |
+
else:
|
113 |
+
return "cpu"
|
114 |
+
|
115 |
+
@staticmethod
|
116 |
+
def get_available_device():
|
117 |
+
devices = ["cpu"]
|
118 |
+
if torch.cuda.is_available():
|
119 |
+
devices.append("cuda")
|
120 |
+
elif torch.backends.mps.is_available():
|
121 |
+
devices.append("mps")
|
122 |
+
return devices
|
modules/whisper_base.py
CHANGED
@@ -1,19 +1,18 @@
|
|
1 |
import os
|
2 |
import torch
|
3 |
from typing import List
|
4 |
-
import whisperx
|
5 |
import whisper
|
6 |
import gradio as gr
|
7 |
from abc import ABC, abstractmethod
|
8 |
from typing import BinaryIO, Union, Tuple, List
|
9 |
import numpy as np
|
10 |
from datetime import datetime
|
11 |
-
from dataclasses import astuple
|
12 |
import time
|
13 |
|
14 |
from modules.subtitle_manager import get_srt, get_vtt, get_txt, write_file, safe_filename
|
15 |
from modules.youtube_manager import get_ytdata, get_ytaudio
|
16 |
from modules.whisper_parameter import *
|
|
|
17 |
|
18 |
|
19 |
class WhisperBase(ABC):
|
@@ -24,20 +23,16 @@ class WhisperBase(ABC):
|
|
24 |
self.model = None
|
25 |
self.current_model_size = None
|
26 |
self.model_dir = model_dir
|
27 |
-
self.diarization_model_dir = os.path.join(self.model_dir, "..", "whisperx")
|
28 |
self.output_dir = output_dir
|
29 |
os.makedirs(self.output_dir, exist_ok=True)
|
30 |
os.makedirs(self.model_dir, exist_ok=True)
|
31 |
-
os.makedirs(self.diarization_model_dir, exist_ok=True)
|
32 |
self.available_models = whisper.available_models()
|
33 |
self.available_langs = sorted(list(whisper.tokenizer.LANGUAGES.values()))
|
34 |
self.translatable_models = ["large", "large-v1", "large-v2", "large-v3"]
|
35 |
self.device = self.get_device()
|
36 |
self.available_compute_types = ["float16", "float32"]
|
37 |
self.current_compute_type = "float16" if self.device == "cuda" else "float32"
|
38 |
-
self.
|
39 |
-
self.diarization_model_metadata = None
|
40 |
-
self.diarization_pipe = None
|
41 |
|
42 |
@abstractmethod
|
43 |
def transcribe(self,
|
@@ -59,8 +54,28 @@ class WhisperBase(ABC):
|
|
59 |
audio: Union[str, BinaryIO, np.ndarray],
|
60 |
progress: gr.Progress,
|
61 |
*whisper_params,
|
62 |
-
):
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
if params.lang == "Automatic Detection":
|
66 |
params.lang = None
|
@@ -75,65 +90,14 @@ class WhisperBase(ABC):
|
|
75 |
)
|
76 |
|
77 |
if params.is_diarize:
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
result,
|
82 |
-
|
83 |
-
language_code=params.lang,
|
84 |
-
use_auth_token=params.hf_token,
|
85 |
-
transcribed_result=result
|
86 |
-
)
|
87 |
-
elapsed_time += elapsed_time_diarization
|
88 |
-
return result, elapsed_time
|
89 |
-
|
90 |
-
def diarize(self,
|
91 |
-
audio: str,
|
92 |
-
language_code: str,
|
93 |
-
use_auth_token: str,
|
94 |
-
transcribed_result: List[dict]
|
95 |
-
):
|
96 |
-
start_time = time.time()
|
97 |
-
|
98 |
-
if (self.diarization_model is None or
|
99 |
-
self.diarization_model_metadata is None or
|
100 |
-
self.diarization_pipe is None):
|
101 |
-
self._update_diarization_model(
|
102 |
-
language_code=language_code,
|
103 |
-
use_auth_token=use_auth_token
|
104 |
)
|
105 |
-
|
106 |
-
|
107 |
-
diarization_segments = self.diarization_pipe(audio)
|
108 |
-
diarized_result = whisperx.assign_word_speakers(
|
109 |
-
diarization_segments,
|
110 |
-
{"segments": transcribed_result}
|
111 |
-
)
|
112 |
-
|
113 |
-
for segment in diarized_result["segments"]:
|
114 |
-
speaker = "None"
|
115 |
-
if "speaker" in segment:
|
116 |
-
speaker = segment["speaker"]
|
117 |
-
|
118 |
-
segment["text"] = speaker + "|" + segment["text"][1:]
|
119 |
-
|
120 |
-
elapsed_time = time.time() - start_time
|
121 |
-
return diarized_result["segments"], elapsed_time
|
122 |
-
|
123 |
-
def _update_diarization_model(self,
|
124 |
-
use_auth_token: str,
|
125 |
-
language_code: str
|
126 |
-
):
|
127 |
-
print("loading diarization model...")
|
128 |
-
self.diarization_model, self.diarization_model_metadata = whisperx.load_align_model(
|
129 |
-
language_code=language_code,
|
130 |
-
device=self.device,
|
131 |
-
model_dir=self.diarization_model_dir,
|
132 |
-
)
|
133 |
-
self.diarization_pipe = whisperx.DiarizationPipeline(
|
134 |
-
use_auth_token=use_auth_token,
|
135 |
-
device=self.device
|
136 |
-
)
|
137 |
|
138 |
def transcribe_file(self,
|
139 |
files: list,
|
@@ -156,7 +120,7 @@ class WhisperBase(ABC):
|
|
156 |
progress: gr.Progress
|
157 |
Indicator to show progress directly in gradio.
|
158 |
*whisper_params: tuple
|
159 |
-
|
160 |
|
161 |
Returns
|
162 |
----------
|
@@ -223,7 +187,7 @@ class WhisperBase(ABC):
|
|
223 |
progress: gr.Progress
|
224 |
Indicator to show progress directly in gradio.
|
225 |
*whisper_params: tuple
|
226 |
-
|
227 |
|
228 |
Returns
|
229 |
----------
|
@@ -278,7 +242,7 @@ class WhisperBase(ABC):
|
|
278 |
progress: gr.Progress
|
279 |
Indicator to show progress directly in gradio.
|
280 |
*whisper_params: tuple
|
281 |
-
|
282 |
|
283 |
Returns
|
284 |
----------
|
|
|
1 |
import os
|
2 |
import torch
|
3 |
from typing import List
|
|
|
4 |
import whisper
|
5 |
import gradio as gr
|
6 |
from abc import ABC, abstractmethod
|
7 |
from typing import BinaryIO, Union, Tuple, List
|
8 |
import numpy as np
|
9 |
from datetime import datetime
|
|
|
10 |
import time
|
11 |
|
12 |
from modules.subtitle_manager import get_srt, get_vtt, get_txt, write_file, safe_filename
|
13 |
from modules.youtube_manager import get_ytdata, get_ytaudio
|
14 |
from modules.whisper_parameter import *
|
15 |
+
from modules.diarizer import Diarizer
|
16 |
|
17 |
|
18 |
class WhisperBase(ABC):
|
|
|
23 |
self.model = None
|
24 |
self.current_model_size = None
|
25 |
self.model_dir = model_dir
|
|
|
26 |
self.output_dir = output_dir
|
27 |
os.makedirs(self.output_dir, exist_ok=True)
|
28 |
os.makedirs(self.model_dir, exist_ok=True)
|
|
|
29 |
self.available_models = whisper.available_models()
|
30 |
self.available_langs = sorted(list(whisper.tokenizer.LANGUAGES.values()))
|
31 |
self.translatable_models = ["large", "large-v1", "large-v2", "large-v3"]
|
32 |
self.device = self.get_device()
|
33 |
self.available_compute_types = ["float16", "float32"]
|
34 |
self.current_compute_type = "float16" if self.device == "cuda" else "float32"
|
35 |
+
self.diarizer = Diarizer()
|
|
|
|
|
36 |
|
37 |
@abstractmethod
|
38 |
def transcribe(self,
|
|
|
54 |
audio: Union[str, BinaryIO, np.ndarray],
|
55 |
progress: gr.Progress,
|
56 |
*whisper_params,
|
57 |
+
) -> Tuple[List[dict], float]:
|
58 |
+
"""
|
59 |
+
Run transcription with conditional post-processing.
|
60 |
+
The diarization will be performed in post-processing if enabled.
|
61 |
+
|
62 |
+
Parameters
|
63 |
+
----------
|
64 |
+
audio: Union[str, BinaryIO, np.ndarray]
|
65 |
+
Audio input. This can be file path or binary type.
|
66 |
+
progress: gr.Progress
|
67 |
+
Indicator to show progress directly in gradio.
|
68 |
+
*whisper_params: tuple
|
69 |
+
Parameters related with whisper. This will be dealt with "WhisperParameters" data class
|
70 |
+
|
71 |
+
Returns
|
72 |
+
----------
|
73 |
+
segments_result: List[dict]
|
74 |
+
list of dicts that includes start, end timestamps and transcribed text
|
75 |
+
elapsed_time: float
|
76 |
+
elapsed time for running
|
77 |
+
"""
|
78 |
+
params = WhisperParameters.as_value(*whisper_params)
|
79 |
|
80 |
if params.lang == "Automatic Detection":
|
81 |
params.lang = None
|
|
|
90 |
)
|
91 |
|
92 |
if params.is_diarize:
|
93 |
+
result, elapsed_time_diarization = self.diarizer.run(
|
94 |
+
audio=audio,
|
95 |
+
use_auth_token=params.hf_token,
|
96 |
+
transcribed_result=result,
|
97 |
+
device=self.device
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
)
|
99 |
+
elapsed_time += elapsed_time_diarization
|
100 |
+
return result, elapsed_time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
def transcribe_file(self,
|
103 |
files: list,
|
|
|
120 |
progress: gr.Progress
|
121 |
Indicator to show progress directly in gradio.
|
122 |
*whisper_params: tuple
|
123 |
+
Parameters related with whisper. This will be dealt with "WhisperParameters" data class
|
124 |
|
125 |
Returns
|
126 |
----------
|
|
|
187 |
progress: gr.Progress
|
188 |
Indicator to show progress directly in gradio.
|
189 |
*whisper_params: tuple
|
190 |
+
Parameters related with whisper. This will be dealt with "WhisperParameters" data class
|
191 |
|
192 |
Returns
|
193 |
----------
|
|
|
242 |
progress: gr.Progress
|
243 |
Indicator to show progress directly in gradio.
|
244 |
*whisper_params: tuple
|
245 |
+
Parameters related with whisper. This will be dealt with "WhisperParameters" data class
|
246 |
|
247 |
Returns
|
248 |
----------
|