Whisper-WebUI / tests /test_transcription.py
jhj0517
Calculate WER between gen result & answer
c7bfcf2
raw
history blame
3.21 kB
from modules.whisper.whisper_factory import WhisperFactory
from modules.whisper.data_classes import *
from modules.utils.subtitle_manager import read_file
from modules.utils.paths import WEBUI_DIR
from test_config import *
import requests
import pytest
import gradio as gr
import os
@pytest.mark.parametrize(
"whisper_type,vad_filter,bgm_separation,diarization",
[
(WhisperImpl.WHISPER.value, False, False, False),
(WhisperImpl.FASTER_WHISPER.value, False, False, False),
(WhisperImpl.INSANELY_FAST_WHISPER.value, False, False, False)
]
)
def test_transcribe(
whisper_type: str,
vad_filter: bool,
bgm_separation: bool,
diarization: bool,
):
audio_path_dir = os.path.join(WEBUI_DIR, "tests")
audio_path = os.path.join(audio_path_dir, "jfk.wav")
if not os.path.exists(audio_path):
download_file(TEST_FILE_DOWNLOAD_URL, audio_path_dir)
answer = TEST_ANSWER
if diarization:
answer = "SPEAKER_00|"+TEST_ANSWER
whisper_inferencer = WhisperFactory.create_whisper_inference(
whisper_type=whisper_type,
)
print(
f"""Whisper Device : {whisper_inferencer.device}\n"""
f"""BGM Separation Device: {whisper_inferencer.music_separator.device}\n"""
f"""Diarization Device: {whisper_inferencer.diarizer.device}"""
)
hparams = TranscriptionPipelineParams(
whisper=WhisperParams(
model_size=TEST_WHISPER_MODEL,
compute_type=whisper_inferencer.current_compute_type
),
vad=VadParams(
vad_filter=vad_filter
),
bgm_separation=BGMSeparationParams(
is_separate_bgm=bgm_separation,
enable_offload=True
),
diarization=DiarizationParams(
is_diarize=diarization
),
).to_list()
subtitle_str, file_paths = whisper_inferencer.transcribe_file(
[audio_path],
None,
"SRT",
False,
gr.Progress(),
*hparams,
)
subtitle = read_file(file_paths[0]).split("\n")
assert calculate_wer(answer, subtitle[2].strip().replace(",", "").replace(".", "")) < 0.1
if not is_pytube_detected_bot():
subtitle_str, file_path = whisper_inferencer.transcribe_youtube(
TEST_YOUTUBE_URL,
"SRT",
False,
gr.Progress(),
*hparams,
)
assert isinstance(subtitle_str, str) and subtitle_str
assert os.path.exists(file_path)
subtitle_str, file_path = whisper_inferencer.transcribe_mic(
audio_path,
"SRT",
False,
gr.Progress(),
*hparams,
)
subtitle = read_file(file_path).split("\n")
assert calculate_wer(answer, subtitle[2].strip().replace(",", "").replace(".", "")) < 0.1
def download_file(url, save_dir):
if os.path.exists(TEST_FILE_PATH):
return
if not os.path.exists(save_dir):
os.makedirs(save_dir)
file_name = url.split("/")[-1]
file_path = os.path.join(save_dir, file_name)
response = requests.get(url)
with open(file_path, "wb") as file:
file.write(response.content)
print(f"File downloaded to: {file_path}")