Spaces:
Running
Running
| import numpy as np | |
| import pandas as pd | |
| import os | |
| from pyannote.audio import Pipeline | |
| from typing import Optional, Union | |
| import torch | |
| from modules.diarize.audio_loader import load_audio, SAMPLE_RATE | |
| class DiarizationPipeline: | |
| def __init__( | |
| self, | |
| model_name="pyannote/speaker-diarization-3.1", | |
| cache_dir: str = os.path.join("models", "Diarization"), | |
| use_auth_token=None, | |
| device: Optional[Union[str, torch.device]] = "cpu", | |
| ): | |
| if isinstance(device, str): | |
| device = torch.device(device) | |
| self.model = Pipeline.from_pretrained( | |
| model_name, | |
| use_auth_token=use_auth_token, | |
| cache_dir=cache_dir | |
| ).to(device) | |
| def __call__(self, audio: Union[str, np.ndarray], min_speakers=None, max_speakers=None): | |
| if isinstance(audio, str): | |
| audio = load_audio(audio) | |
| audio_data = { | |
| 'waveform': torch.from_numpy(audio[None, :]), | |
| 'sample_rate': SAMPLE_RATE | |
| } | |
| segments = self.model(audio_data, min_speakers=min_speakers, max_speakers=max_speakers) | |
| diarize_df = pd.DataFrame(segments.itertracks(yield_label=True), columns=['segment', 'label', 'speaker']) | |
| diarize_df['start'] = diarize_df['segment'].apply(lambda x: x.start) | |
| diarize_df['end'] = diarize_df['segment'].apply(lambda x: x.end) | |
| return diarize_df | |
| def assign_word_speakers(diarize_df, transcript_result, fill_nearest=False): | |
| transcript_segments = transcript_result["segments"] | |
| for seg in transcript_segments: | |
| # assign speaker to segment (if any) | |
| diarize_df['intersection'] = np.minimum(diarize_df['end'], seg['end']) - np.maximum(diarize_df['start'], | |
| seg['start']) | |
| diarize_df['union'] = np.maximum(diarize_df['end'], seg['end']) - np.minimum(diarize_df['start'], seg['start']) | |
| intersected = diarize_df[diarize_df["intersection"] > 0] | |
| speaker = None | |
| if len(intersected) > 0: | |
| # Choosing most strong intersection | |
| speaker = intersected.groupby("speaker")["intersection"].sum().sort_values(ascending=False).index[0] | |
| elif fill_nearest: | |
| # Otherwise choosing closest | |
| speaker = diarize_df.sort_values(by=["intersection"], ascending=False)["speaker"].values[0] | |
| if speaker is not None: | |
| seg["speaker"] = speaker | |
| # assign speaker to words | |
| if 'words' in seg: | |
| for word in seg['words']: | |
| if 'start' in word: | |
| diarize_df['intersection'] = np.minimum(diarize_df['end'], word['end']) - np.maximum( | |
| diarize_df['start'], word['start']) | |
| diarize_df['union'] = np.maximum(diarize_df['end'], word['end']) - np.minimum(diarize_df['start'], | |
| word['start']) | |
| intersected = diarize_df[diarize_df["intersection"] > 0] | |
| word_speaker = None | |
| if len(intersected) > 0: | |
| # Choosing most strong intersection | |
| word_speaker = \ | |
| intersected.groupby("speaker")["intersection"].sum().sort_values(ascending=False).index[0] | |
| elif fill_nearest: | |
| # Otherwise choosing closest | |
| word_speaker = diarize_df.sort_values(by=["intersection"], ascending=False)["speaker"].values[0] | |
| if word_speaker is not None: | |
| word["speaker"] = word_speaker | |
| return transcript_result | |
| class Segment: | |
| def __init__(self, start, end, speaker=None): | |
| self.start = start | |
| self.end = end | |
| self.speaker = speaker | |