|
|
|
|
|
""" |
|
This file defines various neural network live_portrait and utility functions, including convolutional and residual blocks, |
|
normalizations, and functions for spatial transformation and tensor manipulation. |
|
""" |
|
|
|
from torch import nn |
|
import torch.nn.functional as F |
|
import torch |
|
import torch.nn.utils.spectral_norm as spectral_norm |
|
import math |
|
import warnings |
|
|
|
|
|
def kp2gaussian(kp, spatial_size, kp_variance): |
|
""" |
|
Transform a keypoint into gaussian like representation |
|
""" |
|
mean = kp |
|
|
|
coordinate_grid = make_coordinate_grid(spatial_size, mean) |
|
number_of_leading_dimensions = len(mean.shape) - 1 |
|
shape = (1,) * number_of_leading_dimensions + coordinate_grid.shape |
|
coordinate_grid = coordinate_grid.view(*shape) |
|
repeats = mean.shape[:number_of_leading_dimensions] + (1, 1, 1, 1) |
|
coordinate_grid = coordinate_grid.repeat(*repeats) |
|
|
|
|
|
shape = mean.shape[:number_of_leading_dimensions] + (1, 1, 1, 3) |
|
mean = mean.view(*shape) |
|
|
|
mean_sub = (coordinate_grid - mean) |
|
|
|
out = torch.exp(-0.5 * (mean_sub ** 2).sum(-1) / kp_variance) |
|
|
|
return out |
|
|
|
|
|
def make_coordinate_grid(spatial_size, ref, **kwargs): |
|
d, h, w = spatial_size |
|
x = torch.arange(w).type(ref.dtype).to(ref.device) |
|
y = torch.arange(h).type(ref.dtype).to(ref.device) |
|
z = torch.arange(d).type(ref.dtype).to(ref.device) |
|
|
|
|
|
x = (2 * (x / (w - 1)) - 1) |
|
y = (2 * (y / (h - 1)) - 1) |
|
z = (2 * (z / (d - 1)) - 1) |
|
|
|
yy = y.view(1, -1, 1).repeat(d, 1, w) |
|
xx = x.view(1, 1, -1).repeat(d, h, 1) |
|
zz = z.view(-1, 1, 1).repeat(1, h, w) |
|
|
|
meshed = torch.cat([xx.unsqueeze_(3), yy.unsqueeze_(3), zz.unsqueeze_(3)], 3) |
|
|
|
return meshed |
|
|
|
|
|
class ConvT2d(nn.Module): |
|
""" |
|
Upsampling block for use in decoder. |
|
""" |
|
|
|
def __init__(self, in_features, out_features, kernel_size=3, stride=2, padding=1, output_padding=1): |
|
super(ConvT2d, self).__init__() |
|
|
|
self.convT = nn.ConvTranspose2d(in_features, out_features, kernel_size=kernel_size, stride=stride, |
|
padding=padding, output_padding=output_padding) |
|
self.norm = nn.InstanceNorm2d(out_features) |
|
|
|
def forward(self, x): |
|
out = self.convT(x) |
|
out = self.norm(out) |
|
out = F.leaky_relu(out) |
|
return out |
|
|
|
|
|
class ResBlock3d(nn.Module): |
|
""" |
|
Res block, preserve spatial resolution. |
|
""" |
|
|
|
def __init__(self, in_features, kernel_size, padding): |
|
super(ResBlock3d, self).__init__() |
|
self.conv1 = nn.Conv3d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size, padding=padding) |
|
self.conv2 = nn.Conv3d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size, padding=padding) |
|
self.norm1 = nn.BatchNorm3d(in_features, affine=True) |
|
self.norm2 = nn.BatchNorm3d(in_features, affine=True) |
|
|
|
def forward(self, x): |
|
out = self.norm1(x) |
|
out = F.relu(out) |
|
out = self.conv1(out) |
|
out = self.norm2(out) |
|
out = F.relu(out) |
|
out = self.conv2(out) |
|
out += x |
|
return out |
|
|
|
|
|
class UpBlock3d(nn.Module): |
|
""" |
|
Upsampling block for use in decoder. |
|
""" |
|
|
|
def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1): |
|
super(UpBlock3d, self).__init__() |
|
|
|
self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, |
|
padding=padding, groups=groups) |
|
self.norm = nn.BatchNorm3d(out_features, affine=True) |
|
|
|
def forward(self, x): |
|
out = F.interpolate(x, scale_factor=(1, 2, 2)) |
|
out = self.conv(out) |
|
out = self.norm(out) |
|
out = F.relu(out) |
|
return out |
|
|
|
|
|
class DownBlock2d(nn.Module): |
|
""" |
|
Downsampling block for use in encoder. |
|
""" |
|
|
|
def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1): |
|
super(DownBlock2d, self).__init__() |
|
self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, padding=padding, groups=groups) |
|
self.norm = nn.BatchNorm2d(out_features, affine=True) |
|
self.pool = nn.AvgPool2d(kernel_size=(2, 2)) |
|
|
|
def forward(self, x): |
|
out = self.conv(x) |
|
out = self.norm(out) |
|
out = F.relu(out) |
|
out = self.pool(out) |
|
return out |
|
|
|
|
|
class DownBlock3d(nn.Module): |
|
""" |
|
Downsampling block for use in encoder. |
|
""" |
|
|
|
def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1): |
|
super(DownBlock3d, self).__init__() |
|
''' |
|
self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, |
|
padding=padding, groups=groups, stride=(1, 2, 2)) |
|
''' |
|
self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, |
|
padding=padding, groups=groups) |
|
self.norm = nn.BatchNorm3d(out_features, affine=True) |
|
self.pool = nn.AvgPool3d(kernel_size=(1, 2, 2)) |
|
|
|
def forward(self, x): |
|
out = self.conv(x) |
|
out = self.norm(out) |
|
out = F.relu(out) |
|
out = self.pool(out) |
|
return out |
|
|
|
|
|
class SameBlock2d(nn.Module): |
|
""" |
|
Simple block, preserve spatial resolution. |
|
""" |
|
|
|
def __init__(self, in_features, out_features, groups=1, kernel_size=3, padding=1, lrelu=False): |
|
super(SameBlock2d, self).__init__() |
|
self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, padding=padding, groups=groups) |
|
self.norm = nn.BatchNorm2d(out_features, affine=True) |
|
if lrelu: |
|
self.ac = nn.LeakyReLU() |
|
else: |
|
self.ac = nn.ReLU() |
|
|
|
def forward(self, x): |
|
out = self.conv(x) |
|
out = self.norm(out) |
|
out = self.ac(out) |
|
return out |
|
|
|
|
|
class Encoder(nn.Module): |
|
""" |
|
Hourglass Encoder |
|
""" |
|
|
|
def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256): |
|
super(Encoder, self).__init__() |
|
|
|
down_blocks = [] |
|
for i in range(num_blocks): |
|
down_blocks.append(DownBlock3d(in_features if i == 0 else min(max_features, block_expansion * (2 ** i)), min(max_features, block_expansion * (2 ** (i + 1))), kernel_size=3, padding=1)) |
|
self.down_blocks = nn.ModuleList(down_blocks) |
|
|
|
def forward(self, x): |
|
outs = [x] |
|
for down_block in self.down_blocks: |
|
outs.append(down_block(outs[-1])) |
|
return outs |
|
|
|
|
|
class Decoder(nn.Module): |
|
""" |
|
Hourglass Decoder |
|
""" |
|
|
|
def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256): |
|
super(Decoder, self).__init__() |
|
|
|
up_blocks = [] |
|
|
|
for i in range(num_blocks)[::-1]: |
|
in_filters = (1 if i == num_blocks - 1 else 2) * min(max_features, block_expansion * (2 ** (i + 1))) |
|
out_filters = min(max_features, block_expansion * (2 ** i)) |
|
up_blocks.append(UpBlock3d(in_filters, out_filters, kernel_size=3, padding=1)) |
|
|
|
self.up_blocks = nn.ModuleList(up_blocks) |
|
self.out_filters = block_expansion + in_features |
|
|
|
self.conv = nn.Conv3d(in_channels=self.out_filters, out_channels=self.out_filters, kernel_size=3, padding=1) |
|
self.norm = nn.BatchNorm3d(self.out_filters, affine=True) |
|
|
|
def forward(self, x): |
|
out = x.pop() |
|
for up_block in self.up_blocks: |
|
out = up_block(out) |
|
skip = x.pop() |
|
out = torch.cat([out, skip], dim=1) |
|
out = self.conv(out) |
|
out = self.norm(out) |
|
out = F.relu(out) |
|
return out |
|
|
|
|
|
class Hourglass(nn.Module): |
|
""" |
|
Hourglass architecture. |
|
""" |
|
|
|
def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256): |
|
super(Hourglass, self).__init__() |
|
self.encoder = Encoder(block_expansion, in_features, num_blocks, max_features) |
|
self.decoder = Decoder(block_expansion, in_features, num_blocks, max_features) |
|
self.out_filters = self.decoder.out_filters |
|
|
|
def forward(self, x): |
|
return self.decoder(self.encoder(x)) |
|
|
|
|
|
class SPADE(nn.Module): |
|
def __init__(self, norm_nc, label_nc): |
|
super().__init__() |
|
|
|
self.param_free_norm = nn.InstanceNorm2d(norm_nc, affine=False) |
|
nhidden = 128 |
|
|
|
self.mlp_shared = nn.Sequential( |
|
nn.Conv2d(label_nc, nhidden, kernel_size=3, padding=1), |
|
nn.ReLU()) |
|
self.mlp_gamma = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1) |
|
self.mlp_beta = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1) |
|
|
|
def forward(self, x, segmap): |
|
normalized = self.param_free_norm(x) |
|
segmap = F.interpolate(segmap, size=x.size()[2:], mode='nearest') |
|
actv = self.mlp_shared(segmap) |
|
gamma = self.mlp_gamma(actv) |
|
beta = self.mlp_beta(actv) |
|
out = normalized * (1 + gamma) + beta |
|
return out |
|
|
|
|
|
class SPADEResnetBlock(nn.Module): |
|
def __init__(self, fin, fout, norm_G, label_nc, use_se=False, dilation=1): |
|
super().__init__() |
|
|
|
self.learned_shortcut = (fin != fout) |
|
fmiddle = min(fin, fout) |
|
self.use_se = use_se |
|
|
|
self.conv_0 = nn.Conv2d(fin, fmiddle, kernel_size=3, padding=dilation, dilation=dilation) |
|
self.conv_1 = nn.Conv2d(fmiddle, fout, kernel_size=3, padding=dilation, dilation=dilation) |
|
if self.learned_shortcut: |
|
self.conv_s = nn.Conv2d(fin, fout, kernel_size=1, bias=False) |
|
|
|
if 'spectral' in norm_G: |
|
self.conv_0 = spectral_norm(self.conv_0) |
|
self.conv_1 = spectral_norm(self.conv_1) |
|
if self.learned_shortcut: |
|
self.conv_s = spectral_norm(self.conv_s) |
|
|
|
self.norm_0 = SPADE(fin, label_nc) |
|
self.norm_1 = SPADE(fmiddle, label_nc) |
|
if self.learned_shortcut: |
|
self.norm_s = SPADE(fin, label_nc) |
|
|
|
def forward(self, x, seg1): |
|
x_s = self.shortcut(x, seg1) |
|
dx = self.conv_0(self.actvn(self.norm_0(x, seg1))) |
|
dx = self.conv_1(self.actvn(self.norm_1(dx, seg1))) |
|
out = x_s + dx |
|
return out |
|
|
|
def shortcut(self, x, seg1): |
|
if self.learned_shortcut: |
|
x_s = self.conv_s(self.norm_s(x, seg1)) |
|
else: |
|
x_s = x |
|
return x_s |
|
|
|
def actvn(self, x): |
|
return F.leaky_relu(x, 2e-1) |
|
|
|
|
|
def filter_state_dict(state_dict, remove_name='fc'): |
|
new_state_dict = {} |
|
for key in state_dict: |
|
if remove_name in key: |
|
continue |
|
new_state_dict[key] = state_dict[key] |
|
return new_state_dict |
|
|
|
|
|
class GRN(nn.Module): |
|
""" GRN (Global Response Normalization) layer |
|
""" |
|
|
|
def __init__(self, dim): |
|
super().__init__() |
|
self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim)) |
|
self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim)) |
|
|
|
def forward(self, x): |
|
Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True) |
|
Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6) |
|
return self.gamma * (x * Nx) + self.beta + x |
|
|
|
|
|
class LayerNorm(nn.Module): |
|
r""" LayerNorm that supports two data formats: channels_last (default) or channels_first. |
|
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with |
|
shape (batch_size, height, width, channels) while channels_first corresponds to inputs |
|
with shape (batch_size, channels, height, width). |
|
""" |
|
|
|
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"): |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(normalized_shape)) |
|
self.bias = nn.Parameter(torch.zeros(normalized_shape)) |
|
self.eps = eps |
|
self.data_format = data_format |
|
if self.data_format not in ["channels_last", "channels_first"]: |
|
raise NotImplementedError |
|
self.normalized_shape = (normalized_shape, ) |
|
|
|
def forward(self, x): |
|
if self.data_format == "channels_last": |
|
return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) |
|
elif self.data_format == "channels_first": |
|
u = x.mean(1, keepdim=True) |
|
s = (x - u).pow(2).mean(1, keepdim=True) |
|
x = (x - u) / torch.sqrt(s + self.eps) |
|
x = self.weight[:, None, None] * x + self.bias[:, None, None] |
|
return x |
|
|
|
|
|
def _no_grad_trunc_normal_(tensor, mean, std, a, b): |
|
|
|
|
|
def norm_cdf(x): |
|
|
|
return (1. + math.erf(x / math.sqrt(2.))) / 2. |
|
|
|
if (mean < a - 2 * std) or (mean > b + 2 * std): |
|
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " |
|
"The distribution of values may be incorrect.", |
|
stacklevel=2) |
|
|
|
with torch.no_grad(): |
|
|
|
|
|
|
|
l = norm_cdf((a - mean) / std) |
|
u = norm_cdf((b - mean) / std) |
|
|
|
|
|
|
|
tensor.uniform_(2 * l - 1, 2 * u - 1) |
|
|
|
|
|
|
|
tensor.erfinv_() |
|
|
|
|
|
tensor.mul_(std * math.sqrt(2.)) |
|
tensor.add_(mean) |
|
|
|
|
|
tensor.clamp_(min=a, max=b) |
|
return tensor |
|
|
|
|
|
def drop_path(x, drop_prob=0., training=False, scale_by_keep=True): |
|
""" Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). |
|
|
|
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, |
|
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... |
|
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for |
|
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use |
|
'survival rate' as the argument. |
|
|
|
""" |
|
if drop_prob == 0. or not training: |
|
return x |
|
keep_prob = 1 - drop_prob |
|
shape = (x.shape[0],) + (1,) * (x.ndim - 1) |
|
random_tensor = x.new_empty(shape).bernoulli_(keep_prob) |
|
if keep_prob > 0.0 and scale_by_keep: |
|
random_tensor.div_(keep_prob) |
|
return x * random_tensor |
|
|
|
|
|
class DropPath(nn.Module): |
|
""" Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). |
|
""" |
|
|
|
def __init__(self, drop_prob=None, scale_by_keep=True): |
|
super(DropPath, self).__init__() |
|
self.drop_prob = drop_prob |
|
self.scale_by_keep = scale_by_keep |
|
|
|
def forward(self, x): |
|
return drop_path(x, self.drop_prob, self.training, self.scale_by_keep) |
|
|
|
|
|
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): |
|
return _no_grad_trunc_normal_(tensor, mean, std, a, b) |
|
|