|
|
|
|
|
""" |
|
This moudle is adapted to the ConvNeXtV2 version for the extraction of implicit keypoints, poses, and expression deformation. |
|
""" |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from .util import LayerNorm, DropPath, trunc_normal_, GRN |
|
|
|
__all__ = ['convnextv2_tiny'] |
|
|
|
|
|
class Block(nn.Module): |
|
""" ConvNeXtV2 Block. |
|
|
|
Args: |
|
dim (int): Number of input channels. |
|
drop_path (float): Stochastic depth rate. Default: 0.0 |
|
""" |
|
|
|
def __init__(self, dim, drop_path=0.): |
|
super().__init__() |
|
self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) |
|
self.norm = LayerNorm(dim, eps=1e-6) |
|
self.pwconv1 = nn.Linear(dim, 4 * dim) |
|
self.act = nn.GELU() |
|
self.grn = GRN(4 * dim) |
|
self.pwconv2 = nn.Linear(4 * dim, dim) |
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
def forward(self, x): |
|
input = x |
|
x = self.dwconv(x) |
|
x = x.permute(0, 2, 3, 1) |
|
x = self.norm(x) |
|
x = self.pwconv1(x) |
|
x = self.act(x) |
|
x = self.grn(x) |
|
x = self.pwconv2(x) |
|
x = x.permute(0, 3, 1, 2) |
|
|
|
x = input + self.drop_path(x) |
|
return x |
|
|
|
|
|
class ConvNeXtV2(nn.Module): |
|
""" ConvNeXt V2 |
|
|
|
Args: |
|
in_chans (int): Number of input image channels. Default: 3 |
|
num_classes (int): Number of classes for classification head. Default: 1000 |
|
depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3] |
|
dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768] |
|
drop_path_rate (float): Stochastic depth rate. Default: 0. |
|
head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_chans=3, |
|
depths=[3, 3, 9, 3], |
|
dims=[96, 192, 384, 768], |
|
drop_path_rate=0., |
|
**kwargs |
|
): |
|
super().__init__() |
|
self.depths = depths |
|
self.downsample_layers = nn.ModuleList() |
|
stem = nn.Sequential( |
|
nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4), |
|
LayerNorm(dims[0], eps=1e-6, data_format="channels_first") |
|
) |
|
self.downsample_layers.append(stem) |
|
for i in range(3): |
|
downsample_layer = nn.Sequential( |
|
LayerNorm(dims[i], eps=1e-6, data_format="channels_first"), |
|
nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2), |
|
) |
|
self.downsample_layers.append(downsample_layer) |
|
|
|
self.stages = nn.ModuleList() |
|
dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] |
|
cur = 0 |
|
for i in range(4): |
|
stage = nn.Sequential( |
|
*[Block(dim=dims[i], drop_path=dp_rates[cur + j]) for j in range(depths[i])] |
|
) |
|
self.stages.append(stage) |
|
cur += depths[i] |
|
|
|
self.norm = nn.LayerNorm(dims[-1], eps=1e-6) |
|
|
|
|
|
num_bins = kwargs.get('num_bins', 66) |
|
num_kp = kwargs.get('num_kp', 24) |
|
self.fc_kp = nn.Linear(dims[-1], 3 * num_kp) |
|
|
|
|
|
self.fc_scale = nn.Linear(dims[-1], 1) |
|
self.fc_pitch = nn.Linear(dims[-1], num_bins) |
|
self.fc_yaw = nn.Linear(dims[-1], num_bins) |
|
self.fc_roll = nn.Linear(dims[-1], num_bins) |
|
self.fc_t = nn.Linear(dims[-1], 3) |
|
self.fc_exp = nn.Linear(dims[-1], 3 * num_kp) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, (nn.Conv2d, nn.Linear)): |
|
trunc_normal_(m.weight, std=.02) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def forward_features(self, x): |
|
for i in range(4): |
|
x = self.downsample_layers[i](x) |
|
x = self.stages[i](x) |
|
return self.norm(x.mean([-2, -1])) |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
|
|
|
|
kp = self.fc_kp(x) |
|
|
|
|
|
pitch = self.fc_pitch(x) |
|
yaw = self.fc_yaw(x) |
|
roll = self.fc_roll(x) |
|
t = self.fc_t(x) |
|
exp = self.fc_exp(x) |
|
scale = self.fc_scale(x) |
|
|
|
ret_dct = { |
|
'pitch': pitch, |
|
'yaw': yaw, |
|
'roll': roll, |
|
't': t, |
|
'exp': exp, |
|
'scale': scale, |
|
|
|
'kp': kp, |
|
} |
|
|
|
return ret_dct |
|
|
|
|
|
def convnextv2_tiny(**kwargs): |
|
model = ConvNeXtV2(depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], **kwargs) |
|
return model |
|
|