|
|
|
|
|
""" |
|
Warping field estimator(W) defined in the paper, which generates a warping field using the implicit |
|
keypoint representations x_s and x_d, and employs this flow field to warp the source feature volume f_s. |
|
""" |
|
|
|
from torch import nn |
|
import torch.nn.functional as F |
|
from .util import SameBlock2d |
|
from .dense_motion import DenseMotionNetwork |
|
|
|
|
|
class WarpingNetwork(nn.Module): |
|
def __init__( |
|
self, |
|
num_kp, |
|
block_expansion, |
|
max_features, |
|
num_down_blocks, |
|
reshape_channel, |
|
estimate_occlusion_map=False, |
|
dense_motion_params=None, |
|
**kwargs |
|
): |
|
super(WarpingNetwork, self).__init__() |
|
|
|
self.upscale = kwargs.get('upscale', 1) |
|
self.flag_use_occlusion_map = kwargs.get('flag_use_occlusion_map', True) |
|
|
|
if dense_motion_params is not None: |
|
self.dense_motion_network = DenseMotionNetwork( |
|
num_kp=num_kp, |
|
feature_channel=reshape_channel, |
|
estimate_occlusion_map=estimate_occlusion_map, |
|
**dense_motion_params |
|
) |
|
else: |
|
self.dense_motion_network = None |
|
|
|
self.third = SameBlock2d(max_features, block_expansion * (2 ** num_down_blocks), kernel_size=(3, 3), padding=(1, 1), lrelu=True) |
|
self.fourth = nn.Conv2d(in_channels=block_expansion * (2 ** num_down_blocks), out_channels=block_expansion * (2 ** num_down_blocks), kernel_size=1, stride=1) |
|
|
|
self.estimate_occlusion_map = estimate_occlusion_map |
|
|
|
def deform_input(self, inp, deformation): |
|
return F.grid_sample(inp, deformation, align_corners=False) |
|
|
|
def forward(self, feature_3d, kp_driving, kp_source): |
|
if self.dense_motion_network is not None: |
|
|
|
dense_motion = self.dense_motion_network( |
|
feature=feature_3d, kp_driving=kp_driving, kp_source=kp_source |
|
) |
|
if 'occlusion_map' in dense_motion: |
|
occlusion_map = dense_motion['occlusion_map'] |
|
else: |
|
occlusion_map = None |
|
|
|
deformation = dense_motion['deformation'] |
|
out = self.deform_input(feature_3d, deformation) |
|
|
|
bs, c, d, h, w = out.shape |
|
out = out.view(bs, c * d, h, w) |
|
out = self.third(out) |
|
out = self.fourth(out) |
|
|
|
if self.flag_use_occlusion_map and (occlusion_map is not None): |
|
out = out * occlusion_map |
|
|
|
ret_dct = { |
|
'occlusion_map': occlusion_map, |
|
'deformation': deformation, |
|
'out': out, |
|
} |
|
|
|
return ret_dct |
|
|