llm-autobiography / chatgpt.py
jhao's picture
Upload folder using huggingface_hub
27d101d verified
raw
history blame
19.8 kB
import gradio as gr
import whisper
import asyncio
import httpx
import tempfile
import os
import requests
import time
import threading
from datetime import datetime, timedelta
session = requests.Session()
from interview_protocol import protocols as interview_protocols
model = whisper.load_model("base")
base_url = "https://llm4socialisolation-fd4082d0a518.herokuapp.com"
# base_url = "http://localhost:8080"
timeout = 60
concurrency_count=10
# mapping between display names and internal chatbot_type values
display_to_value = {
'Echo': 'enhanced',
'Breeze': 'baseline'
}
value_to_display = {
'enhanced': 'Echo',
'baseline': 'Breeze'
}
def get_method_index(chapter, method):
all_methods = []
for chap in interview_protocols.values():
all_methods.extend(chap)
index = all_methods.index(method)
return index
async def initialization(api_key, chapter_name, topic_name, username, prompts, chatbot_type):
url = f"{base_url}/api/initialization"
headers = {'Content-Type': 'application/json'}
data = {
'api_key': api_key,
'chapter_name': chapter_name,
'topic_name': topic_name,
'username': username,
'chatbot_type': chatbot_type,
**prompts
}
async with httpx.AsyncClient(timeout=timeout) as client:
try:
response = await client.post(url, json=data, headers=headers)
if response.status_code == 200:
return "Initialization successful."
else:
return f"Initialization failed: {response.text}"
except asyncio.TimeoutError:
print("The request timed out")
return "Request timed out during initialization."
except Exception as e:
return f"Error in initialization: {str(e)}"
def fetch_default_prompts(chatbot_type):
url = f"{base_url}?chatbot_type={chatbot_type}"
try:
response = httpx.get(url, timeout=timeout)
if response.status_code == 200:
prompts = response.json()
print(prompts)
return prompts
else:
print(f"Failed to fetch prompts: {response.status_code} - {response.text}")
return {}
except Exception as e:
print(f"Error fetching prompts: {str(e)}")
return {}
async def get_backend_response(api_key, patient_prompt, username, chatbot_type):
url = f"{base_url}/responses/doctor"
headers = {'Content-Type': 'application/json'}
data = {
'username': username,
'patient_prompt': patient_prompt,
'chatbot_type': chatbot_type
}
async with httpx.AsyncClient(timeout=timeout) as client:
try:
response = await client.post(url, json=data, headers=headers)
if response.status_code == 200:
response_data = response.json()
return response_data
else:
return f"Failed to fetch response from backend: {response.text}"
except Exception as e:
return f"Error contacting backend service: {str(e)}"
async def save_conversation_and_memory(username, chatbot_type):
url = f"{base_url}/save/end_and_save"
headers = {'Content-Type': 'application/json'}
data = {
'username': username,
'chatbot_type': chatbot_type
}
async with httpx.AsyncClient(timeout=timeout) as client:
try:
response = await client.post(url, json=data, headers=headers)
if response.status_code == 200:
response_data = response.json()
return response_data.get('message', 'Saving Error!')
else:
return f"Failed to save conversations and memory graph: {response.text}"
except Exception as e:
return f"Error contacting backend service: {str(e)}"
async def get_conversation_histories(username, chatbot_type):
url = f"{base_url}/save/download_conversations"
headers = {'Content-Type': 'application/json'}
data = {
'username': username,
'chatbot_type': chatbot_type
}
async with httpx.AsyncClient(timeout=timeout) as client:
try:
response = await client.post(url, json=data, headers=headers)
if response.status_code == 200:
conversation_data = response.json()
return conversation_data
else:
return []
except Exception as e:
return []
def download_conversations(username, chatbot_type):
conversation_histories = asyncio.run(get_conversation_histories(username, chatbot_type))
files = []
temp_dir = tempfile.mkdtemp()
for conversation_entry in conversation_histories:
file_name = conversation_entry.get('file_name', f"Conversation_{len(files)+1}.txt")
conversation = conversation_entry.get('conversation', [])
conversation_text = ""
for message_pair in conversation:
if isinstance(message_pair, list) and len(message_pair) == 2:
speaker, message = message_pair
conversation_text += f"{speaker.capitalize()}: {message}\n\n"
else:
conversation_text += f"Unknown format: {message_pair}\n\n"
temp_file_path = os.path.join(temp_dir, file_name)
with open(temp_file_path, 'w') as temp_file:
temp_file.write(conversation_text)
files.append(temp_file_path)
return files
async def get_biography(username, chatbot_type):
url = f"{base_url}/save/generate_autobiography"
headers = {'Content-Type': 'application/json'}
data = {
'username': username,
'chatbot_type': chatbot_type
}
async with httpx.AsyncClient(timeout=timeout) as client:
try:
response = await client.post(url, json=data, headers=headers)
if response.status_code == 200:
biography_data = response.json()
biography_text = biography_data.get('biography', '')
return biography_text
else:
return "Failed to generate biography."
except Exception as e:
return f"Error contacting backend service: {str(e)}"
def download_biography(username, chatbot_type):
biography_text = asyncio.run(get_biography(username, chatbot_type))
if not biography_text or "Failed" in biography_text or "Error" in biography_text:
return gr.update(value=None, visible=False), gr.update(value=biography_text, visible=True)
temp_dir = tempfile.mkdtemp()
temp_file_path = os.path.join(temp_dir, "biography.txt")
with open(temp_file_path, 'w') as temp_file:
temp_file.write(biography_text)
return temp_file_path, gr.update(value=biography_text, visible=True)
def transcribe_audio(audio_file):
transcription = model.transcribe(audio_file)["text"]
return transcription
def submit_text_and_respond(edited_text, api_key, username, history, chatbot_type):
response = asyncio.run(get_backend_response(api_key, edited_text, username, chatbot_type))
print('------')
print(response)
if isinstance(response, str):
history.append((edited_text, response))
return history, "", []
doctor_response = response['doctor_response']['response']
memory_event = response.get('memory_events', [])
history.append((edited_text, doctor_response))
memory_graph = update_memory_graph(memory_event)
return history, "", memory_graph # Return memory_graph as output
def set_initialize_button(api_key_input, chapter_name, topic_name, username_input,
system_prompt_text, conv_instruction_prompt_text, therapy_prompt_text, autobio_prompt_text, chatbot_display_name):
chatbot_type = display_to_value.get(chatbot_display_name, 'enhanced')
prompts = {
'system_prompt': system_prompt_text,
'conv_instruction_prompt': conv_instruction_prompt_text,
'therapy_prompt': therapy_prompt_text,
'autobio_prompt': autobio_prompt_text
}
message = asyncio.run(initialization(api_key_input, chapter_name, topic_name, username_input, prompts, chatbot_type))
print(message)
return message, api_key_input, chatbot_type
def save_conversation(username, chatbot_type):
response = asyncio.run(save_conversation_and_memory(username, chatbot_type))
return response
def start_recording(audio_file):
if not audio_file:
return ""
try:
transcription = transcribe_audio(audio_file)
return transcription
except Exception as e:
return f"Failed to transcribe: {str(e)}"
def update_methods(chapter):
return gr.update(choices=interview_protocols[chapter], value=interview_protocols[chapter][0])
def update_memory_graph(memory_data):
table_data = []
for node in memory_data:
table_data.append([
node.get('date', ''),
node.get('topic', ''),
node.get('event_description', ''),
node.get('people_involved', '')
])
return table_data
def update_prompts(chatbot_display_name):
chatbot_type = display_to_value.get(chatbot_display_name, 'enhanced')
prompts = fetch_default_prompts(chatbot_type)
return (
gr.update(value=prompts.get('system_prompt', '')),
gr.update(value=prompts.get('conv_instruction_prompt', '')),
gr.update(value=prompts.get('therapy_prompt', '')),
gr.update(value=prompts.get('autobio_generation_prompt', '')),
)
def update_chatbot_type(chatbot_display_name):
chatbot_type = display_to_value.get(chatbot_display_name, 'enhanced')
return chatbot_type
# Function to start the periodic toggle
def start_timer():
target_timestamp = datetime.now() + timedelta(seconds=8 * 60)
return True, target_timestamp
def reset_timer():
is_running = False
return is_running, "Timer remaining: 8:00"
# Async function to manage periodic updates, running every second
def periodic_call(is_running, target_timestamp):
if is_running:
prefix = 'Time remaining:'
time_difference = target_timestamp - datetime.now()
second_left = int(round(time_difference.total_seconds()))
if second_left <= 0:
second_left = 0
minutes, seconds = divmod(second_left, 60)
new_remain_min = f'{minutes:02}'
new_remain_second = f'{seconds:02}'
new_info = f'{prefix} {new_remain_min}:{new_remain_second}'
return new_info
else:
return 'Time remaining: 8:00'
# initialize prompts with empty strings
initial_prompts = {'system_prompt': '', 'conv_instruction_prompt': '', 'therapy_prompt': '', 'autobio_generation_prompt': ''}
# CSS to keep the buttons small
css = """
#start_button, #reset_button {
padding: 4px 10px !important;
font-size: 12px !important;
width: auto !important;
}
"""
with gr.Blocks(css=css) as app:
chatbot_type_state = gr.State('enhanced')
api_key_state = gr.State()
prompt_visibility_state = gr.State(False)
is_running = gr.State()
target_timestamp = gr.State()
with gr.Row():
with gr.Column(scale=1, min_width=250):
gr.Markdown("## Settings")
# chatbot Type Selection
with gr.Box():
gr.Markdown("### Chatbot Selection")
chatbot_type_dropdown = gr.Dropdown(
label="Select Chatbot Type",
choices=['Echo', 'Breeze'],
value='Echo',
)
chatbot_type_dropdown.change(
fn=update_chatbot_type,
inputs=[chatbot_type_dropdown],
outputs=[chatbot_type_state]
)
# fetch initial prompts based on the default chatbot type
system_prompt_value, conv_instruction_prompt_value, therapy_prompt_value, autobio_prompt_value = update_prompts('Echo')
# interview protocol selection
with gr.Box():
gr.Markdown("### Interview Protocol")
chapter_dropdown = gr.Dropdown(
label="Select Chapter",
choices=list(interview_protocols.keys()),
value=list(interview_protocols.keys())[1],
)
method_dropdown = gr.Dropdown(
label="Select Topic",
choices=interview_protocols[chapter_dropdown.value],
value=interview_protocols[chapter_dropdown.value][3],
)
chapter_dropdown.change(
fn=update_methods,
inputs=[chapter_dropdown],
outputs=[method_dropdown]
)
# Update states when selections change
def update_chapter(chapter):
return chapter
def update_method(method):
return method
chapter_state = gr.State()
method_state = gr.State()
chapter_dropdown.change(
fn=update_chapter,
inputs=[chapter_dropdown],
outputs=[chapter_state]
)
method_dropdown.change(
fn=update_method,
inputs=[method_dropdown],
outputs=[method_state]
)
# customize Prompts
with gr.Box():
toggle_prompts_button = gr.Button("Show Prompts")
# wrap the prompts in a component with initial visibility set to False
with gr.Column(visible=False) as prompt_section:
gr.Markdown("### Customize Prompts")
system_prompt = gr.Textbox(
label="System Prompt",
placeholder="Enter the system prompt here.",
value=system_prompt_value['value']
)
conv_instruction_prompt = gr.Textbox(
label="Conversation Instruction Prompt",
placeholder="Enter the instruction for each conversation here.",
value=conv_instruction_prompt_value['value']
)
therapy_prompt = gr.Textbox(
label="Therapy Prompt",
placeholder="Enter the instruction for reminiscence therapy.",
value=therapy_prompt_value['value']
)
autobio_prompt = gr.Textbox(
label="Autobiography Generation Prompt",
placeholder="Enter the instruction for autobiography generation.",
value=autobio_prompt_value['value']
)
# update prompts when chatbot_type changes
chatbot_type_dropdown.change(
fn=update_prompts,
inputs=[chatbot_type_dropdown],
outputs=[system_prompt, conv_instruction_prompt, therapy_prompt, autobio_prompt]
)
with gr.Box():
gr.Markdown("### User Information")
username_input = gr.Textbox(
label="Username", placeholder="Enter your username"
)
api_key_input = gr.Textbox(
label="OpenAI API Key",
placeholder="Enter your openai api key",
value="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",
type="password"
)
initialize_button = gr.Button("Initialize", variant="primary", size="large")
initialization_status = gr.Textbox(
label="Status", interactive=False, placeholder="Initialization status will appear here."
)
initialize_button.click(
fn=set_initialize_button,
inputs=[api_key_input, chapter_dropdown, method_dropdown, username_input,
system_prompt, conv_instruction_prompt, therapy_prompt, autobio_prompt, chatbot_type_dropdown],
outputs=[initialization_status, api_key_state, chatbot_type_state],
)
# define the function to toggle prompts visibility
def toggle_prompts(visibility):
new_visibility = not visibility
button_text = "Hide Prompts" if new_visibility else "Show Prompts"
return gr.update(value=button_text), gr.update(visible=new_visibility), new_visibility
toggle_prompts_button.click(
fn=toggle_prompts,
inputs=[prompt_visibility_state],
outputs=[toggle_prompts_button, prompt_section, prompt_visibility_state]
)
with gr.Column(scale=3):
with gr.Row():
timer_display = gr.Textbox(value="Time remaining: 08:00", label="")
start_button = gr.Button("Start Timer", elem_id="start_button")
start_button.click(start_timer, outputs=[is_running, target_timestamp]).then(
periodic_call, inputs=[is_running, target_timestamp], outputs=timer_display, every=1)
chatbot = gr.Chatbot(label="Chat here for autobiography generation", height=500)
with gr.Row():
transcription_box = gr.Textbox(
label="Transcription (You can edit this)", lines=3
)
audio_input = gr.Audio(
source="microphone", type="filepath", label="🎤 Record Audio"
)
with gr.Row():
submit_button = gr.Button("Submit", variant="primary", size="large")
save_conversation_button = gr.Button("End and Save Conversation", variant="secondary")
download_button = gr.Button("Download Conversations", variant="secondary")
download_biography_button = gr.Button("Download Biography", variant="secondary")
memory_graph_table = gr.Dataframe(
headers=["Date", "Topic", "Description", "People Involved"],
datatype=["str", "str", "str", "str"],
interactive=False,
label="Memory Events",
max_rows=5
)
biography_textbox = gr.Textbox(label="Autobiography", visible=False)
audio_input.change(
fn=start_recording,
inputs=[audio_input],
outputs=[transcription_box]
)
state = gr.State([])
submit_button.click(
submit_text_and_respond,
inputs=[transcription_box, api_key_state, username_input, state, chatbot_type_state],
outputs=[chatbot, transcription_box, memory_graph_table]
)
download_button.click(
fn=download_conversations,
inputs=[username_input, chatbot_type_state],
outputs=gr.Files()
)
download_biography_button.click(
fn=download_biography,
inputs=[username_input, chatbot_type_state],
outputs=[gr.File(label="Biography.txt"), biography_textbox]
)
save_conversation_button.click(
fn=save_conversation,
inputs=[username_input, chatbot_type_state],
outputs=None
)
app.queue()
app.launch(share=True, max_threads=10)