Spaces:
Sleeping
Sleeping
import os | |
from typing import Optional | |
from transformers import pipeline | |
from .base import AbstractLLMModel | |
from .registry import register_llm_model | |
hf_token = os.getenv("HF_TOKEN") | |
class LlamaLLM(AbstractLLMModel): | |
def __init__( | |
self, model_id: str, device: str = "auto", cache_dir: str = "cache", **kwargs | |
): | |
super().__init__(model_id, device, cache_dir, **kwargs) | |
model_kwargs = kwargs.setdefault("model_kwargs", {}) | |
model_kwargs["cache_dir"] = cache_dir | |
self.pipe = pipeline( | |
"text-generation", | |
model=model_id, | |
device_map=device, | |
return_full_text=False, | |
token=hf_token, | |
trust_remote_code=True, | |
**kwargs, | |
) | |
def generate( | |
self, | |
prompt: str, | |
system_prompt: Optional[ | |
str | |
] = "You are a pirate chatbot who always responds in pirate speak!", | |
max_new_tokens: int = 256, | |
**kwargs | |
) -> str: | |
messages = [] | |
if system_prompt: | |
messages.append({"role": "system", "content": system_prompt}) | |
messages.append({"role": "user", "content": prompt}) | |
outputs = self.pipe(messages, max_new_tokens=max_new_tokens, **kwargs) | |
return outputs[0]["generated_text"] | |