Spaces:
Running
Running
import torch | |
from transformers import AutoTokenizer, AutoModelForMaskedLM | |
from transformers import pipeline | |
import random | |
from nltk.corpus import stopwords | |
import nltk | |
nltk.download('stopwords') | |
import math | |
from vocabulary_split import split_vocabulary, filter_logits | |
import abc | |
from typing import List | |
# Load tokenizer and model for masked language model | |
tokenizer = AutoTokenizer.from_pretrained("bert-large-cased-whole-word-masking") | |
model = AutoModelForMaskedLM.from_pretrained("bert-large-cased-whole-word-masking") | |
fill_mask = pipeline("fill-mask", model=model, tokenizer=tokenizer) | |
# Get permissible vocabulary | |
permissible, _ = split_vocabulary(seed=42) | |
permissible_indices = torch.tensor([i in permissible.values() for i in range(len(tokenizer))]) | |
def get_logits_for_mask(model, tokenizer, sentence): | |
inputs = tokenizer(sentence, return_tensors="pt") | |
mask_token_index = torch.where(inputs["input_ids"] == tokenizer.mask_token_id)[1] | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
logits = outputs.logits | |
mask_token_logits = logits[0, mask_token_index, :] | |
return mask_token_logits.squeeze() | |
# Abstract Masking Strategy | |
class MaskingStrategy(abc.ABC): | |
def select_words_to_mask(self, words: List[str], **kwargs) -> List[int]: | |
""" | |
Given a list of words, return the indices of words to mask. | |
""" | |
pass | |
# Specific Masking Strategies | |
class RandomNonStopwordMasking(MaskingStrategy): | |
def __init__(self, num_masks: int = 1): | |
self.num_masks = num_masks | |
self.stop_words = set(stopwords.words('english')) | |
def select_words_to_mask(self, words: List[str], **kwargs) -> List[int]: | |
non_stop_indices = [i for i, word in enumerate(words) if word.lower() not in self.stop_words] | |
if not non_stop_indices: | |
return [] | |
num_masks = min(self.num_masks, len(non_stop_indices)) | |
return random.sample(non_stop_indices, num_masks) | |
class HighEntropyMasking(MaskingStrategy): | |
def __init__(self, num_masks: int = 1): | |
self.num_masks = num_masks | |
def select_words_to_mask(self, words: List[str], sentence: str, model, tokenizer, permissible_indices) -> List[int]: | |
candidate_indices = [i for i, word in enumerate(words) if word.lower() not in set(stopwords.words('english'))] | |
if not candidate_indices: | |
return [] | |
entropy_scores = {} | |
for idx in candidate_indices: | |
masked_sentence = ' '.join(words[:idx] + ['[MASK]'] + words[idx+1:]) | |
logits = get_logits_for_mask(model, tokenizer, masked_sentence) | |
filtered_logits = filter_logits(logits, permissible_indices) | |
probs = torch.softmax(filtered_logits, dim=-1) | |
top_5_probs = probs.topk(5).values | |
entropy = -torch.sum(top_5_probs * torch.log(top_5_probs + 1e-10)).item() | |
entropy_scores[idx] = entropy | |
# Select top N indices with highest entropy | |
sorted_indices = sorted(entropy_scores, key=entropy_scores.get, reverse=True) | |
return sorted_indices[:self.num_masks] | |
class PseudoRandomNonStopwordMasking(MaskingStrategy): | |
def __init__(self, num_masks: int = 1, seed: int = 10): | |
self.num_masks = num_masks | |
self.seed = seed | |
self.stop_words = set(stopwords.words('english')) | |
def select_words_to_mask(self, words: List[str], **kwargs) -> List[int]: | |
non_stop_indices = [i for i, word in enumerate(words) if word.lower() not in self.stop_words] | |
if not non_stop_indices: | |
return [] | |
random.seed(self.seed) | |
num_masks = min(self.num_masks, len(non_stop_indices)) | |
return random.sample(non_stop_indices, num_masks) | |
class CompositeMaskingStrategy(MaskingStrategy): | |
def __init__(self, strategies: List[MaskingStrategy]): | |
self.strategies = strategies | |
def select_words_to_mask(self, words: List[str], **kwargs) -> List[int]: | |
selected_indices = [] | |
for strategy in self.strategies: | |
if isinstance(strategy, HighEntropyMasking): | |
selected = strategy.select_words_to_mask(words, **kwargs) | |
else: | |
selected = strategy.select_words_to_mask(words) | |
selected_indices.extend(selected) | |
return list(set(selected_indices)) # Remove duplicates | |
# Refactored mask_between_lcs function | |
def mask_between_lcs(sentence, lcs_points, masking_strategy: MaskingStrategy, model, tokenizer, permissible_indices): | |
words = sentence.split() | |
masked_indices = [] | |
segments = [] | |
# Define segments based on LCS points | |
previous = 0 | |
for point in lcs_points: | |
if point > previous: | |
segments.append((previous, point)) | |
previous = point + 1 | |
if previous < len(words): | |
segments.append((previous, len(words))) | |
# Collect all indices to mask from each segment | |
for start, end in segments: | |
segment_words = words[start:end] | |
if isinstance(masking_strategy, HighEntropyMasking): | |
selected = masking_strategy.select_words_to_mask(segment_words, sentence, model, tokenizer, permissible_indices) | |
else: | |
selected = masking_strategy.select_words_to_mask(segment_words) | |
# Adjust indices relative to the whole sentence | |
for idx in selected: | |
masked_idx = start + idx | |
if masked_idx not in masked_indices: | |
masked_indices.append(masked_idx) | |
# Apply masking | |
for idx in masked_indices: | |
words[idx] = '[MASK]' | |
masked_sentence = ' '.join(words) | |
logits = get_logits_for_mask(model, tokenizer, masked_sentence) | |
# Process each masked token | |
top_words_list = [] | |
logits_list = [] | |
for i, idx in enumerate(masked_indices): | |
logits_i = logits[i] | |
if logits_i.dim() > 1: | |
logits_i = logits_i.squeeze() | |
filtered_logits_i = filter_logits(logits_i, permissible_indices) | |
logits_list.append(filtered_logits_i.tolist()) | |
top_5_indices = filtered_logits_i.topk(5).indices.tolist() | |
top_words = [tokenizer.decode([i]) for i in top_5_indices] | |
top_words_list.append(top_words) | |
return masked_sentence, logits_list, top_words_list | |
# Example Usage | |
if __name__ == "__main__": | |
# Example sentence and LCS points | |
sentence = "This is a sample sentence with some LCS points" | |
lcs_points = [2, 5, 8] # Indices of LCS points | |
# Initialize masking strategies | |
random_non_stopword_strategy = RandomNonStopwordMasking(num_masks=1) | |
high_entropy_strategy = HighEntropyMasking(num_masks=1) | |
pseudo_random_strategy = PseudoRandomNonStopwordMasking(num_masks=1, seed=10) | |
composite_strategy = CompositeMaskingStrategy([ | |
RandomNonStopwordMasking(num_masks=1), | |
HighEntropyMasking(num_masks=1) | |
]) | |
# Choose a strategy | |
chosen_strategy = composite_strategy # You can choose any initialized strategy | |
# Apply masking | |
masked_sentence, logits_list, top_words_list = mask_between_lcs( | |
sentence, | |
lcs_points, | |
masking_strategy=chosen_strategy, | |
model=model, | |
tokenizer=tokenizer, | |
permissible_indices=permissible_indices | |
) | |
print("Masked Sentence:", masked_sentence) | |
for idx, top_words in enumerate(top_words_list): | |
print(f"Top words for mask {idx+1}:", top_words) | |