Spaces:
Running
Running
import torch | |
import random | |
from vocabulary_split import split_vocabulary, filter_logits | |
# from transformers import AutoTokenizer, AutoModelForMaskedLM | |
from masking_methods import tokenizer | |
# Load tokenizer and model for masked language model | |
# tokenizer = AutoTokenizer.from_pretrained("bert-large-cased-whole-word-masking") | |
# model = AutoModelForMaskedLM.from_pretrained("bert-large-cased-whole-word-masking") | |
# Get permissible vocabulary | |
permissible, _ = split_vocabulary(seed=42) | |
permissible_indices = torch.tensor([i in permissible.values() for i in range(len(tokenizer))]) | |
def sample_word(sentence, words, logits, sampling_technique='inverse_transform', temperature=1.0): | |
filtered_logits = filter_logits(torch.tensor(logits), permissible_indices) | |
if sampling_technique == 'inverse_transform': | |
probs = torch.softmax(filtered_logits / temperature, dim=-1) | |
cumulative_probs = torch.cumsum(probs, dim=-1) | |
random_prob = random.random() | |
sampled_index = torch.where(cumulative_probs >= random_prob)[0][0] | |
elif sampling_technique == 'exponential_minimum': | |
probs = torch.softmax(filtered_logits / temperature, dim=-1) | |
exp_probs = torch.exp(-torch.log(probs)) | |
random_probs = torch.rand_like(exp_probs) | |
sampled_index = torch.argmax(random_probs * exp_probs) | |
elif sampling_technique == 'temperature': | |
probs = torch.softmax(filtered_logits / temperature, dim=-1) | |
sampled_index = torch.multinomial(probs, 1).item() | |
elif sampling_technique == 'greedy': | |
sampled_index = torch.argmax(filtered_logits).item() | |
else: | |
raise ValueError("Invalid sampling technique. Choose 'inverse_transform', 'exponential_minimum', 'temperature', or 'greedy'.") | |
sampled_word = tokenizer.decode([sampled_index]) | |
# Replace [MASK] with the sampled word | |
filled_sentence = sentence.replace('[MASK]', sampled_word) | |
return filled_sentence |