Spaces:
Sleeping
Sleeping
Add more commenting for header and sections
Browse files
app.py
CHANGED
|
@@ -1,3 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import pipeline, AutoTokenizer, AutoModelForImageTextToText
|
| 3 |
from sentence_transformers import SentenceTransformer, util
|
|
@@ -5,12 +21,16 @@ import evaluate
|
|
| 5 |
import warnings
|
| 6 |
import logging
|
| 7 |
|
| 8 |
-
# --- 0. Setup & Warning Suppression ---
|
| 9 |
# Filter out the "FutureWarning" and "UserWarning" to keep the console clean
|
| 10 |
warnings.filterwarnings("ignore", category=FutureWarning)
|
| 11 |
warnings.filterwarnings("ignore", category=UserWarning)
|
| 12 |
logging.getLogger("transformers").setLevel(logging.ERROR)
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
# --- 1. Load Image Captioning Models ---
|
| 15 |
|
| 16 |
# Model 1: BLIP (Base)
|
|
@@ -42,7 +62,11 @@ rouge = evaluate.load("rouge")
|
|
| 42 |
# These cover: Peaceful dog, Sad funeral, Happy kids, Angry man, Scared people, Fighting tigers
|
| 43 |
VIBE_LABELS = ["Peaceful/Calm", "Happy/Joy", "Sad/Sorrow", "Angry/Upset", "Fear/Scared", "Action/Violence"]
|
| 44 |
|
| 45 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
def analyze_image(image, ground_truth):
|
| 47 |
|
| 48 |
# -- A. Generate Captions --
|
|
@@ -112,7 +136,9 @@ def analyze_image(image, ground_truth):
|
|
| 112 |
|
| 113 |
return out1, out2, stats
|
| 114 |
|
| 115 |
-
#
|
|
|
|
|
|
|
| 116 |
|
| 117 |
# Define Inputs
|
| 118 |
image_input = gr.Image(type="pil", label="Upload Image")
|
|
|
|
| 1 |
+
# ==============================================================================
|
| 2 |
+
# Josh Guimond
|
| 3 |
+
# Unit 8 Assignment: End-to-End AI Solution Implementation
|
| 4 |
+
# ARIN 460
|
| 5 |
+
# 12/03/2025
|
| 6 |
+
|
| 7 |
+
# Description: This script implements a multimodal AI web app using Gradio to
|
| 8 |
+
# run two image captioning models, a text “vibe” classifier, and NLP metrics on
|
| 9 |
+
# uploaded images, allowing direct comparison of model captions to ground-truth
|
| 10 |
+
# descriptions.
|
| 11 |
+
# ==============================================================================
|
| 12 |
+
|
| 13 |
+
# ==============================================================================
|
| 14 |
+
# SECTION 1: SETUP & INSTALLATIONS
|
| 15 |
+
# ==============================================================================
|
| 16 |
+
# Install libraries
|
| 17 |
import gradio as gr
|
| 18 |
from transformers import pipeline, AutoTokenizer, AutoModelForImageTextToText
|
| 19 |
from sentence_transformers import SentenceTransformer, util
|
|
|
|
| 21 |
import warnings
|
| 22 |
import logging
|
| 23 |
|
|
|
|
| 24 |
# Filter out the "FutureWarning" and "UserWarning" to keep the console clean
|
| 25 |
warnings.filterwarnings("ignore", category=FutureWarning)
|
| 26 |
warnings.filterwarnings("ignore", category=UserWarning)
|
| 27 |
logging.getLogger("transformers").setLevel(logging.ERROR)
|
| 28 |
|
| 29 |
+
|
| 30 |
+
# ==============================================================================
|
| 31 |
+
# SECTION 2: LOAD MODELS
|
| 32 |
+
# ==============================================================================
|
| 33 |
+
|
| 34 |
# --- 1. Load Image Captioning Models ---
|
| 35 |
|
| 36 |
# Model 1: BLIP (Base)
|
|
|
|
| 62 |
# These cover: Peaceful dog, Sad funeral, Happy kids, Angry man, Scared people, Fighting tigers
|
| 63 |
VIBE_LABELS = ["Peaceful/Calm", "Happy/Joy", "Sad/Sorrow", "Angry/Upset", "Fear/Scared", "Action/Violence"]
|
| 64 |
|
| 65 |
+
# ==============================================================================
|
| 66 |
+
# SECTION 3: ANALYSIS FUNCTIONS
|
| 67 |
+
# ==============================================================================
|
| 68 |
+
|
| 69 |
+
# --- Analysis Function ---
|
| 70 |
def analyze_image(image, ground_truth):
|
| 71 |
|
| 72 |
# -- A. Generate Captions --
|
|
|
|
| 136 |
|
| 137 |
return out1, out2, stats
|
| 138 |
|
| 139 |
+
# ==============================================================================
|
| 140 |
+
# SECTION 4: GRADIO INTERFACE
|
| 141 |
+
# ==============================================================================
|
| 142 |
|
| 143 |
# Define Inputs
|
| 144 |
image_input = gr.Image(type="pil", label="Upload Image")
|