Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
p = pipeline("automatic-speech-recognition")
|
2 |
|
3 |
from tensorflow.keras.models import load_model
|
@@ -46,4 +55,62 @@ def transcribe(audio, state=""):
|
|
46 |
time.sleep(3)
|
47 |
text = p(audio)["text"]
|
48 |
text = sentiment_vader(text)
|
49 |
-
return text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
import numpy as np
|
4 |
+
import librosa
|
5 |
+
import time
|
6 |
+
from transformers import pipeline
|
7 |
+
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
|
8 |
+
|
9 |
+
|
10 |
p = pipeline("automatic-speech-recognition")
|
11 |
|
12 |
from tensorflow.keras.models import load_model
|
|
|
55 |
time.sleep(3)
|
56 |
text = p(audio)["text"]
|
57 |
text = sentiment_vader(text)
|
58 |
+
return text
|
59 |
+
|
60 |
+
|
61 |
+
# Define functions for acoustic and semantic predictions (predict_emotion_from_audio and transcribe)
|
62 |
+
|
63 |
+
# Create a combined function that calls both models
|
64 |
+
def get_predictions(audio_input):
|
65 |
+
# Perform transcription to get the text
|
66 |
+
transcribed_text = transcribe(audio_input)
|
67 |
+
|
68 |
+
# Define the API key for DeepAI Text to Image API
|
69 |
+
api_key = 'dee3e3f2-d5cf-474c-8072-bd6bea47e865'
|
70 |
+
|
71 |
+
# Generate the image with the transcribed text using DeepAI Text to Image API
|
72 |
+
image = generate_image(api_key, transcribed_text)
|
73 |
+
|
74 |
+
# Get emotion prediction from audio
|
75 |
+
emotion_prediction = predict_emotion_from_audio(audio_input)
|
76 |
+
|
77 |
+
return [emotion_prediction, transcribed_text, image]
|
78 |
+
|
79 |
+
# Define a function to generate an image using DeepAI Text to Image API
|
80 |
+
def generate_image(api_key, text):
|
81 |
+
url = "https://api.deepai.org/api/text2img"
|
82 |
+
headers = {'api-key': api_key}
|
83 |
+
response = requests.post(
|
84 |
+
url,
|
85 |
+
data={
|
86 |
+
'text': text,
|
87 |
+
},
|
88 |
+
headers=headers
|
89 |
+
)
|
90 |
+
response_data = response.json()
|
91 |
+
if 'output_url' in response_data:
|
92 |
+
image_url = response_data['output_url']
|
93 |
+
image_response = requests.get(image_url)
|
94 |
+
image = Image.open(BytesIO(image_response.content))
|
95 |
+
return image
|
96 |
+
else:
|
97 |
+
return None
|
98 |
+
|
99 |
+
# Create the Gradio interface for acoustic and semantic predictions
|
100 |
+
with gr.Blocks() as interface:
|
101 |
+
gr.Markdown("Emotional Machines test: Load or Record an audio file to speech emotion analysis")
|
102 |
+
with gr.Tabs():
|
103 |
+
with gr.Tab("Acoustic and Semantic Predictions"):
|
104 |
+
with gr.Row():
|
105 |
+
input_audio = gr.Audio(label="Input Audio", type="filepath")
|
106 |
+
submit_button = gr.Button("Submit")
|
107 |
+
output_labels = [gr.Label(num_top_classes=8), gr.Label(num_top_classes=4), gr.Image(type='pil')]
|
108 |
+
|
109 |
+
# Set the function to be called when the button is clicked for acoustic and semantic predictions
|
110 |
+
submit_button.click(get_predictions, inputs=input_audio, outputs=output_labels)
|
111 |
+
|
112 |
+
# Display transcribed text as a label
|
113 |
+
transcribed_text_label = gr.Label(label="Transcribed Text")
|
114 |
+
|
115 |
+
# Launch the Gradio interface
|
116 |
+
interface.launch()
|