Spaces:
Runtime error
Runtime error
| """Wrapper around HazyResearch's Manifest library.""" | |
| from typing import Any, Dict, List, Mapping, Optional | |
| from pydantic import BaseModel, Extra, root_validator | |
| from langchain.llms.base import LLM | |
| class ManifestWrapper(LLM, BaseModel): | |
| """Wrapper around HazyResearch's Manifest library.""" | |
| client: Any #: :meta private: | |
| llm_kwargs: Optional[Dict] = None | |
| class Config: | |
| """Configuration for this pydantic object.""" | |
| extra = Extra.forbid | |
| def validate_environment(cls, values: Dict) -> Dict: | |
| """Validate that python package exists in environment.""" | |
| try: | |
| from manifest import Manifest | |
| if not isinstance(values["client"], Manifest): | |
| raise ValueError | |
| except ImportError: | |
| raise ValueError( | |
| "Could not import manifest python package. " | |
| "Please it install it with `pip install manifest-ml`." | |
| ) | |
| return values | |
| def _identifying_params(self) -> Mapping[str, Any]: | |
| kwargs = self.llm_kwargs or {} | |
| return {**self.client.client.get_model_params(), **kwargs} | |
| def _llm_type(self) -> str: | |
| """Return type of llm.""" | |
| return "manifest" | |
| def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str: | |
| """Call out to LLM through Manifest.""" | |
| if stop is not None and len(stop) != 1: | |
| raise NotImplementedError( | |
| f"Manifest currently only supports a single stop token, got {stop}" | |
| ) | |
| kwargs = self.llm_kwargs or {} | |
| if stop is not None: | |
| kwargs["stop_token"] = stop | |
| return self.client.run(prompt, **kwargs) | |