Spaces:
Runtime error
Runtime error
"""Wrapper around ForefrontAI APIs.""" | |
from typing import Any, Dict, List, Mapping, Optional | |
import requests | |
from pydantic import BaseModel, Extra, root_validator | |
from langchain.llms.base import LLM | |
from langchain.llms.utils import enforce_stop_tokens | |
from langchain.utils import get_from_dict_or_env | |
class ForefrontAI(LLM, BaseModel): | |
"""Wrapper around ForefrontAI large language models. | |
To use, you should have the environment variable ``FOREFRONTAI_API_KEY`` | |
set with your API key. | |
Example: | |
.. code-block:: python | |
from langchain.llms import ForefrontAI | |
forefrontai = ForefrontAI(endpoint_url="") | |
""" | |
endpoint_url: str = "" | |
"""Model name to use.""" | |
temperature: float = 0.7 | |
"""What sampling temperature to use.""" | |
length: int = 256 | |
"""The maximum number of tokens to generate in the completion.""" | |
top_p: float = 1.0 | |
"""Total probability mass of tokens to consider at each step.""" | |
top_k: int = 40 | |
"""The number of highest probability vocabulary tokens to | |
keep for top-k-filtering.""" | |
repetition_penalty: int = 1 | |
"""Penalizes repeated tokens according to frequency.""" | |
forefrontai_api_key: Optional[str] = None | |
base_url: Optional[str] = None | |
"""Base url to use, if None decides based on model name.""" | |
class Config: | |
"""Configuration for this pydantic object.""" | |
extra = Extra.forbid | |
def validate_environment(cls, values: Dict) -> Dict: | |
"""Validate that api key exists in environment.""" | |
forefrontai_api_key = get_from_dict_or_env( | |
values, "forefrontai_api_key", "FOREFRONTAI_API_KEY" | |
) | |
values["forefrontai_api_key"] = forefrontai_api_key | |
return values | |
def _default_params(self) -> Mapping[str, Any]: | |
"""Get the default parameters for calling ForefrontAI API.""" | |
return { | |
"temperature": self.temperature, | |
"length": self.length, | |
"top_p": self.top_p, | |
"top_k": self.top_k, | |
"repetition_penalty": self.repetition_penalty, | |
} | |
def _identifying_params(self) -> Mapping[str, Any]: | |
"""Get the identifying parameters.""" | |
return {**{"endpoint_url": self.endpoint_url}, **self._default_params} | |
def _llm_type(self) -> str: | |
"""Return type of llm.""" | |
return "forefrontai" | |
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str: | |
"""Call out to ForefrontAI's complete endpoint. | |
Args: | |
prompt: The prompt to pass into the model. | |
stop: Optional list of stop words to use when generating. | |
Returns: | |
The string generated by the model. | |
Example: | |
.. code-block:: python | |
response = ForefrontAI("Tell me a joke.") | |
""" | |
response = requests.post( | |
url=self.endpoint_url, | |
headers={ | |
"Authorization": f"Bearer {self.forefrontai_api_key}", | |
"Content-Type": "application/json", | |
}, | |
json={"text": prompt, **self._default_params}, | |
) | |
response_json = response.json() | |
text = response_json["result"][0]["completion"] | |
if stop is not None: | |
# I believe this is required since the stop tokens | |
# are not enforced by the model parameters | |
text = enforce_stop_tokens(text, stop) | |
return text | |