Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| """Wrapper around Cohere APIs.""" | |
| import logging | |
| from typing import Any, Dict, List, Optional | |
| from pydantic import BaseModel, Extra, root_validator | |
| from langchain.llms.base import LLM | |
| from langchain.llms.utils import enforce_stop_tokens | |
| from langchain.utils import get_from_dict_or_env | |
| logger = logging.getLogger(__name__) | |
| class Cohere(LLM, BaseModel): | |
| """Wrapper around Cohere large language models. | |
| To use, you should have the ``cohere`` python package installed, and the | |
| environment variable ``COHERE_API_KEY`` set with your API key, or pass | |
| it as a named parameter to the constructor. | |
| Example: | |
| .. code-block:: python | |
| from langchain.llms import Cohere | |
| cohere = Cohere(model="gptd-instruct-tft", cohere_api_key="my-api-key") | |
| """ | |
| client: Any #: :meta private: | |
| model: Optional[str] = None | |
| """Model name to use.""" | |
| max_tokens: int = 256 | |
| """Denotes the number of tokens to predict per generation.""" | |
| temperature: float = 0.75 | |
| """A non-negative float that tunes the degree of randomness in generation.""" | |
| k: int = 0 | |
| """Number of most likely tokens to consider at each step.""" | |
| p: int = 1 | |
| """Total probability mass of tokens to consider at each step.""" | |
| frequency_penalty: float = 0.0 | |
| """Penalizes repeated tokens according to frequency. Between 0 and 1.""" | |
| presence_penalty: float = 0.0 | |
| """Penalizes repeated tokens. Between 0 and 1.""" | |
| truncate: Optional[str] = None | |
| """Specify how the client handles inputs longer than the maximum token | |
| length: Truncate from START, END or NONE""" | |
| cohere_api_key: Optional[str] = None | |
| stop: Optional[List[str]] = None | |
| class Config: | |
| """Configuration for this pydantic object.""" | |
| extra = Extra.forbid | |
| def validate_environment(cls, values: Dict) -> Dict: | |
| """Validate that api key and python package exists in environment.""" | |
| cohere_api_key = get_from_dict_or_env( | |
| values, "cohere_api_key", "COHERE_API_KEY" | |
| ) | |
| try: | |
| import cohere | |
| values["client"] = cohere.Client(cohere_api_key) | |
| except ImportError: | |
| raise ValueError( | |
| "Could not import cohere python package. " | |
| "Please it install it with `pip install cohere`." | |
| ) | |
| return values | |
| def _default_params(self) -> Dict[str, Any]: | |
| """Get the default parameters for calling Cohere API.""" | |
| return { | |
| "max_tokens": self.max_tokens, | |
| "temperature": self.temperature, | |
| "k": self.k, | |
| "p": self.p, | |
| "frequency_penalty": self.frequency_penalty, | |
| "presence_penalty": self.presence_penalty, | |
| "truncate": self.truncate, | |
| } | |
| def _identifying_params(self) -> Dict[str, Any]: | |
| """Get the identifying parameters.""" | |
| return {**{"model": self.model}, **self._default_params} | |
| def _llm_type(self) -> str: | |
| """Return type of llm.""" | |
| return "cohere" | |
| def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str: | |
| """Call out to Cohere's generate endpoint. | |
| Args: | |
| prompt: The prompt to pass into the model. | |
| stop: Optional list of stop words to use when generating. | |
| Returns: | |
| The string generated by the model. | |
| Example: | |
| .. code-block:: python | |
| response = cohere("Tell me a joke.") | |
| """ | |
| params = self._default_params | |
| if self.stop is not None and stop is not None: | |
| raise ValueError("`stop` found in both the input and default params.") | |
| elif self.stop is not None: | |
| params["stop_sequences"] = self.stop | |
| else: | |
| params["stop_sequences"] = stop | |
| response = self.client.generate(model=self.model, prompt=prompt, **params) | |
| text = response.generations[0].text | |
| # If stop tokens are provided, Cohere's endpoint returns them. | |
| # In order to make this consistent with other endpoints, we strip them. | |
| if stop is not None or self.stop is not None: | |
| text = enforce_stop_tokens(text, params["stop_sequences"]) | |
| return text | |