Spaces:
Runtime error
Runtime error
"""Wrapper around Cohere APIs.""" | |
import logging | |
from typing import Any, Dict, List, Optional | |
from pydantic import BaseModel, Extra, root_validator | |
from langchain.llms.base import LLM | |
from langchain.llms.utils import enforce_stop_tokens | |
from langchain.utils import get_from_dict_or_env | |
logger = logging.getLogger(__name__) | |
class Cohere(LLM, BaseModel): | |
"""Wrapper around Cohere large language models. | |
To use, you should have the ``cohere`` python package installed, and the | |
environment variable ``COHERE_API_KEY`` set with your API key, or pass | |
it as a named parameter to the constructor. | |
Example: | |
.. code-block:: python | |
from langchain.llms import Cohere | |
cohere = Cohere(model="gptd-instruct-tft", cohere_api_key="my-api-key") | |
""" | |
client: Any #: :meta private: | |
model: Optional[str] = None | |
"""Model name to use.""" | |
max_tokens: int = 256 | |
"""Denotes the number of tokens to predict per generation.""" | |
temperature: float = 0.75 | |
"""A non-negative float that tunes the degree of randomness in generation.""" | |
k: int = 0 | |
"""Number of most likely tokens to consider at each step.""" | |
p: int = 1 | |
"""Total probability mass of tokens to consider at each step.""" | |
frequency_penalty: float = 0.0 | |
"""Penalizes repeated tokens according to frequency. Between 0 and 1.""" | |
presence_penalty: float = 0.0 | |
"""Penalizes repeated tokens. Between 0 and 1.""" | |
truncate: Optional[str] = None | |
"""Specify how the client handles inputs longer than the maximum token | |
length: Truncate from START, END or NONE""" | |
cohere_api_key: Optional[str] = None | |
stop: Optional[List[str]] = None | |
class Config: | |
"""Configuration for this pydantic object.""" | |
extra = Extra.forbid | |
def validate_environment(cls, values: Dict) -> Dict: | |
"""Validate that api key and python package exists in environment.""" | |
cohere_api_key = get_from_dict_or_env( | |
values, "cohere_api_key", "COHERE_API_KEY" | |
) | |
try: | |
import cohere | |
values["client"] = cohere.Client(cohere_api_key) | |
except ImportError: | |
raise ValueError( | |
"Could not import cohere python package. " | |
"Please it install it with `pip install cohere`." | |
) | |
return values | |
def _default_params(self) -> Dict[str, Any]: | |
"""Get the default parameters for calling Cohere API.""" | |
return { | |
"max_tokens": self.max_tokens, | |
"temperature": self.temperature, | |
"k": self.k, | |
"p": self.p, | |
"frequency_penalty": self.frequency_penalty, | |
"presence_penalty": self.presence_penalty, | |
"truncate": self.truncate, | |
} | |
def _identifying_params(self) -> Dict[str, Any]: | |
"""Get the identifying parameters.""" | |
return {**{"model": self.model}, **self._default_params} | |
def _llm_type(self) -> str: | |
"""Return type of llm.""" | |
return "cohere" | |
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str: | |
"""Call out to Cohere's generate endpoint. | |
Args: | |
prompt: The prompt to pass into the model. | |
stop: Optional list of stop words to use when generating. | |
Returns: | |
The string generated by the model. | |
Example: | |
.. code-block:: python | |
response = cohere("Tell me a joke.") | |
""" | |
params = self._default_params | |
if self.stop is not None and stop is not None: | |
raise ValueError("`stop` found in both the input and default params.") | |
elif self.stop is not None: | |
params["stop_sequences"] = self.stop | |
else: | |
params["stop_sequences"] = stop | |
response = self.client.generate(model=self.model, prompt=prompt, **params) | |
text = response.generations[0].text | |
# If stop tokens are provided, Cohere's endpoint returns them. | |
# In order to make this consistent with other endpoints, we strip them. | |
if stop is not None or self.stop is not None: | |
text = enforce_stop_tokens(text, params["stop_sequences"]) | |
return text | |