Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,417 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
YOLO Object Detection with Gradio Interface
|
| 4 |
+
Optimized for Hugging Face Spaces deployment
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import gradio as gr
|
| 8 |
+
import cv2
|
| 9 |
+
import numpy as np
|
| 10 |
+
from ultralytics import YOLO
|
| 11 |
+
from PIL import Image
|
| 12 |
+
import torch
|
| 13 |
+
import spaces
|
| 14 |
+
import os
|
| 15 |
+
import tempfile
|
| 16 |
+
|
| 17 |
+
# Global variable for models
|
| 18 |
+
models = {}
|
| 19 |
+
current_model_size = 'nano'
|
| 20 |
+
|
| 21 |
+
def load_model(model_size='nano'):
|
| 22 |
+
"""
|
| 23 |
+
Load YOLO model based on selected size
|
| 24 |
+
"""
|
| 25 |
+
global models, current_model_size
|
| 26 |
+
|
| 27 |
+
model_names = {
|
| 28 |
+
'nano': 'yolov8n.pt',
|
| 29 |
+
'small': 'yolov8s.pt',
|
| 30 |
+
'medium': 'yolov8m.pt',
|
| 31 |
+
'large': 'yolov8l.pt',
|
| 32 |
+
'xlarge': 'yolov8x.pt'
|
| 33 |
+
}
|
| 34 |
+
|
| 35 |
+
model_name = model_names.get(model_size, 'yolov8n.pt')
|
| 36 |
+
|
| 37 |
+
# Check if model already loaded
|
| 38 |
+
if model_size not in models:
|
| 39 |
+
print(f"Loading {model_name}...")
|
| 40 |
+
models[model_size] = YOLO(model_name)
|
| 41 |
+
current_model_size = model_size
|
| 42 |
+
|
| 43 |
+
# Check if CUDA is available
|
| 44 |
+
if torch.cuda.is_available():
|
| 45 |
+
return f"β
Model {model_name} loaded successfully! (GPU enabled)"
|
| 46 |
+
else:
|
| 47 |
+
return f"β
Model {model_name} loaded successfully! (CPU mode)"
|
| 48 |
+
else:
|
| 49 |
+
current_model_size = model_size
|
| 50 |
+
return f"β
Model {model_name} already loaded!"
|
| 51 |
+
|
| 52 |
+
# Use @spaces.GPU decorator for GPU functions on Hugging Face Spaces
|
| 53 |
+
@spaces.GPU(duration=60)
|
| 54 |
+
def detect_image(input_image, model_size, conf_threshold=0.25, iou_threshold=0.45):
|
| 55 |
+
"""
|
| 56 |
+
Perform object detection on a single image
|
| 57 |
+
"""
|
| 58 |
+
if model_size not in models:
|
| 59 |
+
load_model(model_size)
|
| 60 |
+
|
| 61 |
+
model = models[model_size]
|
| 62 |
+
|
| 63 |
+
if input_image is None:
|
| 64 |
+
return None, "No image provided"
|
| 65 |
+
|
| 66 |
+
# Convert PIL Image to numpy array if necessary
|
| 67 |
+
if isinstance(input_image, Image.Image):
|
| 68 |
+
input_image = np.array(input_image)
|
| 69 |
+
|
| 70 |
+
# Run inference
|
| 71 |
+
results = model(input_image, conf=conf_threshold, iou=iou_threshold)
|
| 72 |
+
|
| 73 |
+
# Get annotated image
|
| 74 |
+
annotated_image = results[0].plot()
|
| 75 |
+
|
| 76 |
+
# Get detection details
|
| 77 |
+
detections = []
|
| 78 |
+
for r in results:
|
| 79 |
+
if r.boxes is not None:
|
| 80 |
+
for box in r.boxes:
|
| 81 |
+
if box.cls is not None:
|
| 82 |
+
class_id = int(box.cls)
|
| 83 |
+
class_name = model.names[class_id]
|
| 84 |
+
confidence = float(box.conf)
|
| 85 |
+
bbox = box.xyxy[0].tolist()
|
| 86 |
+
detections.append({
|
| 87 |
+
'class': class_name,
|
| 88 |
+
'confidence': f"{confidence:.2%}",
|
| 89 |
+
'bbox': [int(x) for x in bbox]
|
| 90 |
+
})
|
| 91 |
+
|
| 92 |
+
# Create detection summary
|
| 93 |
+
summary = f"Found {len(detections)} object(s)\n\n"
|
| 94 |
+
if detections:
|
| 95 |
+
# Count occurrences of each class
|
| 96 |
+
class_counts = {}
|
| 97 |
+
for det in detections:
|
| 98 |
+
class_name = det['class']
|
| 99 |
+
if class_name not in class_counts:
|
| 100 |
+
class_counts[class_name] = 0
|
| 101 |
+
class_counts[class_name] += 1
|
| 102 |
+
|
| 103 |
+
summary += "Summary by class:\n"
|
| 104 |
+
for class_name, count in class_counts.items():
|
| 105 |
+
summary += f" β’ {class_name}: {count}\n"
|
| 106 |
+
|
| 107 |
+
summary += "\nDetailed detections:\n"
|
| 108 |
+
for i, det in enumerate(detections, 1):
|
| 109 |
+
summary += f"{i}. {det['class']} ({det['confidence']})\n"
|
| 110 |
+
|
| 111 |
+
return annotated_image, summary
|
| 112 |
+
|
| 113 |
+
@spaces.GPU(duration=120)
|
| 114 |
+
def detect_video(input_video, model_size, conf_threshold=0.25, iou_threshold=0.45, max_frames=300):
|
| 115 |
+
"""
|
| 116 |
+
Perform object detection on video
|
| 117 |
+
"""
|
| 118 |
+
if model_size not in models:
|
| 119 |
+
load_model(model_size)
|
| 120 |
+
|
| 121 |
+
model = models[model_size]
|
| 122 |
+
|
| 123 |
+
if input_video is None:
|
| 124 |
+
return None, "No video provided"
|
| 125 |
+
|
| 126 |
+
# Open video
|
| 127 |
+
cap = cv2.VideoCapture(input_video)
|
| 128 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
| 129 |
+
if fps == 0:
|
| 130 |
+
fps = 25 # Default fallback FPS
|
| 131 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 132 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 133 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 134 |
+
|
| 135 |
+
# Limit processing for Spaces
|
| 136 |
+
if max_frames and total_frames > max_frames:
|
| 137 |
+
total_frames = max_frames
|
| 138 |
+
|
| 139 |
+
# Create temporary output file
|
| 140 |
+
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as tmp_file:
|
| 141 |
+
output_path = tmp_file.name
|
| 142 |
+
|
| 143 |
+
# Setup video writer
|
| 144 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 145 |
+
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
| 146 |
+
|
| 147 |
+
frame_count = 0
|
| 148 |
+
detected_objects = set()
|
| 149 |
+
|
| 150 |
+
# Process progress callback
|
| 151 |
+
def progress_callback(current, total):
|
| 152 |
+
return (current / total) if total > 0 else 0
|
| 153 |
+
|
| 154 |
+
# Process video
|
| 155 |
+
progress = gr.Progress()
|
| 156 |
+
while cap.isOpened() and frame_count < total_frames:
|
| 157 |
+
ret, frame = cap.read()
|
| 158 |
+
if not ret:
|
| 159 |
+
break
|
| 160 |
+
|
| 161 |
+
# Run detection
|
| 162 |
+
results = model(frame, conf=conf_threshold, iou=iou_threshold)
|
| 163 |
+
|
| 164 |
+
# Collect detected classes
|
| 165 |
+
for r in results:
|
| 166 |
+
if r.boxes is not None:
|
| 167 |
+
for box in r.boxes:
|
| 168 |
+
if box.cls is not None:
|
| 169 |
+
class_id = int(box.cls)
|
| 170 |
+
detected_objects.add(model.names[class_id])
|
| 171 |
+
|
| 172 |
+
# Get annotated frame
|
| 173 |
+
annotated_frame = results[0].plot()
|
| 174 |
+
|
| 175 |
+
# Write frame
|
| 176 |
+
out.write(annotated_frame)
|
| 177 |
+
frame_count += 1
|
| 178 |
+
|
| 179 |
+
# Update progress
|
| 180 |
+
if frame_count % 10 == 0:
|
| 181 |
+
progress(frame_count / total_frames, desc=f"Processing frame {frame_count}/{total_frames}")
|
| 182 |
+
|
| 183 |
+
# Clean up
|
| 184 |
+
cap.release()
|
| 185 |
+
out.release()
|
| 186 |
+
|
| 187 |
+
# Create summary
|
| 188 |
+
summary = f"Processed {frame_count} frames\n"
|
| 189 |
+
summary += f"Detected objects: {', '.join(sorted(detected_objects))}" if detected_objects else "No objects detected"
|
| 190 |
+
|
| 191 |
+
return output_path, summary
|
| 192 |
+
|
| 193 |
+
# Create Gradio interface
|
| 194 |
+
def create_interface():
|
| 195 |
+
with gr.Blocks(
|
| 196 |
+
title="YOLO Object Detection",
|
| 197 |
+
theme=gr.themes.Soft(),
|
| 198 |
+
css="""
|
| 199 |
+
.gradio-container {
|
| 200 |
+
max-width: 1200px !important;
|
| 201 |
+
}
|
| 202 |
+
#title {
|
| 203 |
+
text-align: center;
|
| 204 |
+
margin-bottom: 1rem;
|
| 205 |
+
}
|
| 206 |
+
"""
|
| 207 |
+
) as demo:
|
| 208 |
+
gr.Markdown(
|
| 209 |
+
"""
|
| 210 |
+
<div id="title">
|
| 211 |
+
|
| 212 |
+
# π― YOLO Real-Time Object Detection
|
| 213 |
+
|
| 214 |
+
<p>Powered by <b>Ultralytics YOLOv8</b> - State-of-the-art object detection in your browser!</p>
|
| 215 |
+
|
| 216 |
+
[](https://huggingface.co/spaces/YOUR_USERNAME/YOUR_SPACE_NAME?duplicate=true)
|
| 217 |
+
[](https://github.com/ultralytics/ultralytics)
|
| 218 |
+
[](https://github.com/ultralytics/ultralytics/blob/main/LICENSE)
|
| 219 |
+
|
| 220 |
+
</div>
|
| 221 |
+
"""
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
# Main tabs
|
| 225 |
+
with gr.Tabs() as tabs:
|
| 226 |
+
# Image detection tab
|
| 227 |
+
with gr.TabItem("π· Image Detection", id=0):
|
| 228 |
+
with gr.Row():
|
| 229 |
+
with gr.Column():
|
| 230 |
+
image_input = gr.Image(
|
| 231 |
+
label="Upload Image",
|
| 232 |
+
type="numpy",
|
| 233 |
+
elem_id="image_input"
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
+
with gr.Row():
|
| 237 |
+
image_model_size = gr.Dropdown(
|
| 238 |
+
choices=['nano', 'small', 'medium', 'large', 'xlarge'],
|
| 239 |
+
value='nano',
|
| 240 |
+
label="Model Size",
|
| 241 |
+
info="Larger = more accurate but slower"
|
| 242 |
+
)
|
| 243 |
+
|
| 244 |
+
with gr.Row():
|
| 245 |
+
image_conf = gr.Slider(
|
| 246 |
+
minimum=0.0,
|
| 247 |
+
maximum=1.0,
|
| 248 |
+
value=0.25,
|
| 249 |
+
step=0.05,
|
| 250 |
+
label="Confidence Threshold",
|
| 251 |
+
info="Higher = fewer but more confident detections"
|
| 252 |
+
)
|
| 253 |
+
image_iou = gr.Slider(
|
| 254 |
+
minimum=0.0,
|
| 255 |
+
maximum=1.0,
|
| 256 |
+
value=0.45,
|
| 257 |
+
step=0.05,
|
| 258 |
+
label="IoU Threshold",
|
| 259 |
+
info="Higher = less overlap between boxes"
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
image_button = gr.Button("π Detect Objects", variant="primary", size="lg")
|
| 263 |
+
|
| 264 |
+
with gr.Column():
|
| 265 |
+
image_output = gr.Image(label="Detection Result", elem_id="image_output")
|
| 266 |
+
image_text_output = gr.Textbox(
|
| 267 |
+
label="Detection Details",
|
| 268 |
+
lines=10,
|
| 269 |
+
max_lines=20
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
# Example images
|
| 273 |
+
with gr.Row():
|
| 274 |
+
gr.Examples(
|
| 275 |
+
examples=[
|
| 276 |
+
["https://ultralytics.com/images/bus.jpg"],
|
| 277 |
+
["https://ultralytics.com/images/zidane.jpg"],
|
| 278 |
+
],
|
| 279 |
+
inputs=image_input,
|
| 280 |
+
label="Try these examples"
|
| 281 |
+
)
|
| 282 |
+
|
| 283 |
+
# Video detection tab
|
| 284 |
+
with gr.TabItem("π₯ Video Detection", id=1):
|
| 285 |
+
with gr.Row():
|
| 286 |
+
with gr.Column():
|
| 287 |
+
video_input = gr.Video(
|
| 288 |
+
label="Upload Video",
|
| 289 |
+
elem_id="video_input"
|
| 290 |
+
)
|
| 291 |
+
|
| 292 |
+
with gr.Row():
|
| 293 |
+
video_model_size = gr.Dropdown(
|
| 294 |
+
choices=['nano', 'small', 'medium'],
|
| 295 |
+
value='nano',
|
| 296 |
+
label="Model Size",
|
| 297 |
+
info="Nano recommended for videos"
|
| 298 |
+
)
|
| 299 |
+
|
| 300 |
+
with gr.Row():
|
| 301 |
+
video_conf = gr.Slider(
|
| 302 |
+
minimum=0.0,
|
| 303 |
+
maximum=1.0,
|
| 304 |
+
value=0.25,
|
| 305 |
+
step=0.05,
|
| 306 |
+
label="Confidence Threshold"
|
| 307 |
+
)
|
| 308 |
+
video_iou = gr.Slider(
|
| 309 |
+
minimum=0.0,
|
| 310 |
+
maximum=1.0,
|
| 311 |
+
value=0.45,
|
| 312 |
+
step=0.05,
|
| 313 |
+
label="IoU Threshold"
|
| 314 |
+
)
|
| 315 |
+
|
| 316 |
+
max_frames = gr.Slider(
|
| 317 |
+
minimum=10,
|
| 318 |
+
maximum=300,
|
| 319 |
+
value=100,
|
| 320 |
+
step=10,
|
| 321 |
+
label="Max Frames to Process",
|
| 322 |
+
info="Limit for Spaces resources"
|
| 323 |
+
)
|
| 324 |
+
|
| 325 |
+
video_button = gr.Button("π¬ Process Video", variant="primary", size="lg")
|
| 326 |
+
|
| 327 |
+
with gr.Column():
|
| 328 |
+
video_output = gr.Video(
|
| 329 |
+
label="Processed Video",
|
| 330 |
+
elem_id="video_output"
|
| 331 |
+
)
|
| 332 |
+
video_text_output = gr.Textbox(
|
| 333 |
+
label="Processing Summary",
|
| 334 |
+
lines=4
|
| 335 |
+
)
|
| 336 |
+
|
| 337 |
+
# About tab
|
| 338 |
+
with gr.TabItem("βΉοΈ About", id=2):
|
| 339 |
+
gr.Markdown(
|
| 340 |
+
"""
|
| 341 |
+
## About YOLO (You Only Look Once)
|
| 342 |
+
|
| 343 |
+
YOLO is a state-of-the-art, real-time object detection system. This app uses **YOLOv8** from Ultralytics,
|
| 344 |
+
the latest evolution building on Joseph Redmon's original YOLO architecture.
|
| 345 |
+
|
| 346 |
+
### π Model Sizes
|
| 347 |
+
|
| 348 |
+
| Model | Parameters | Speed (CPU) | mAP | Use Case |
|
| 349 |
+
|-------|-----------|-------------|-----|----------|
|
| 350 |
+
| Nano | 3.2M | ~100ms | 37.3 | Real-time, edge devices |
|
| 351 |
+
| Small | 11.2M | ~200ms | 44.9 | Balanced performance |
|
| 352 |
+
| Medium | 25.9M | ~400ms | 50.2 | Good accuracy |
|
| 353 |
+
| Large | 43.7M | ~800ms | 52.9 | High accuracy |
|
| 354 |
+
| XLarge | 68.2M | ~1600ms | 53.9 | Best accuracy |
|
| 355 |
+
|
| 356 |
+
### π― Detectable Objects (COCO Dataset)
|
| 357 |
+
|
| 358 |
+
YOLOv8 can detect 80 different object classes including:
|
| 359 |
+
- **People**: person
|
| 360 |
+
- **Vehicles**: bicycle, car, motorcycle, airplane, bus, train, truck, boat
|
| 361 |
+
- **Animals**: bird, cat, dog, horse, sheep, cow, elephant, bear, zebra, giraffe
|
| 362 |
+
- **Sports**: frisbee, skis, snowboard, sports ball, kite, baseball bat, skateboard, surfboard, tennis racket
|
| 363 |
+
- **Food**: banana, apple, sandwich, orange, broccoli, carrot, hot dog, pizza, donut, cake
|
| 364 |
+
- **Household**: chair, couch, bed, dining table, toilet, TV, laptop, mouse, keyboard, cell phone, book, clock
|
| 365 |
+
- And many more!
|
| 366 |
+
|
| 367 |
+
### π Resources
|
| 368 |
+
|
| 369 |
+
- [Ultralytics YOLOv8 Documentation](https://docs.ultralytics.com/)
|
| 370 |
+
- [Original YOLO Paper](https://arxiv.org/abs/1506.02640)
|
| 371 |
+
- [GitHub Repository](https://github.com/ultralytics/ultralytics)
|
| 372 |
+
|
| 373 |
+
### π€ Credits
|
| 374 |
+
|
| 375 |
+
- Original YOLO by Joseph Redmon
|
| 376 |
+
- YOLOv8 by Ultralytics
|
| 377 |
+
- Gradio by Hugging Face
|
| 378 |
+
- Deployed on Hugging Face Spaces
|
| 379 |
+
|
| 380 |
+
---
|
| 381 |
+
|
| 382 |
+
Made with β€οΈ using Gradio and Ultralytics
|
| 383 |
+
"""
|
| 384 |
+
)
|
| 385 |
+
|
| 386 |
+
# Event handlers
|
| 387 |
+
image_button.click(
|
| 388 |
+
fn=detect_image,
|
| 389 |
+
inputs=[image_input, image_model_size, image_conf, image_iou],
|
| 390 |
+
outputs=[image_output, image_text_output]
|
| 391 |
+
)
|
| 392 |
+
|
| 393 |
+
video_button.click(
|
| 394 |
+
fn=detect_video,
|
| 395 |
+
inputs=[video_input, video_model_size, video_conf, video_iou, max_frames],
|
| 396 |
+
outputs=[video_output, video_text_output]
|
| 397 |
+
)
|
| 398 |
+
|
| 399 |
+
# Load initial model on startup
|
| 400 |
+
demo.load(
|
| 401 |
+
fn=lambda: load_model('nano'),
|
| 402 |
+
inputs=None,
|
| 403 |
+
outputs=None
|
| 404 |
+
)
|
| 405 |
+
|
| 406 |
+
return demo
|
| 407 |
+
|
| 408 |
+
# Main execution
|
| 409 |
+
if __name__ == "__main__":
|
| 410 |
+
# Create and launch interface
|
| 411 |
+
demo = create_interface()
|
| 412 |
+
demo.queue() # Enable queue for better performance
|
| 413 |
+
demo.launch(
|
| 414 |
+
server_name="0.0.0.0",
|
| 415 |
+
server_port=7860,
|
| 416 |
+
show_error=True
|
| 417 |
+
)
|