Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,133 +1,138 @@
|
|
1 |
import fastai
|
2 |
-
import fastai.vision
|
3 |
import PIL
|
4 |
-
import gradio
|
5 |
-
import matplotlib
|
6 |
-
import numpy
|
7 |
-
import pandas
|
8 |
from fastai.vision.all import *
|
9 |
|
10 |
# Crear la clase
|
11 |
class ADA_SKIN(object):
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
# Imprimir de manera legible el nombre y valor de una línea
|
43 |
-
def _pp(self, a, b):
|
44 |
-
print("%34s : %s" % (str(a), str(b)))
|
45 |
-
return
|
46 |
-
|
47 |
-
# Imprimir la línea de encabezado o pie de página
|
48 |
-
def _ph(self):
|
49 |
-
print("-" * 34, ":", "-" * 34)
|
50 |
-
return
|
51 |
-
|
52 |
-
def _predict_image(self, img, cat):
|
53 |
-
pred, idx, probs = learn.predict(img)
|
54 |
-
return dict(zip(cat, map(float, probs)))
|
55 |
-
|
56 |
-
def _predict_image2(self, img, cat):
|
57 |
-
pred, idx, probs = learn2.predict(img)
|
58 |
-
return dict(zip(cat, map(float, probs)))
|
59 |
-
|
60 |
-
def _draw_pred(self, df_pred, df2):
|
61 |
-
canvas, pic = matplotlib.pyplot.subplots(1, 2, figsize=(12, 6))
|
62 |
-
ti = df_pred["vocab"].head(3).values
|
63 |
-
ti2 = df2["vocab"].head(2).values
|
64 |
-
|
65 |
-
try:
|
66 |
-
df_pred["pred"].head(3).plot(ax=pic[0], kind="pie",
|
67 |
-
cmap="Set2", labels=ti, explode=(0.02, 0, 0),
|
68 |
-
wedgeprops=dict(width=.4),
|
69 |
-
normalize=False)
|
70 |
-
df2["pred"].head(2).plot(ax=pic[1], kind="pie",
|
71 |
-
colors=["cornflowerblue", "darkorange"], labels=ti2, explode=(0.02, 0),
|
72 |
-
wedgeprops=dict(width=.4),
|
73 |
-
normalize=False)
|
74 |
-
except:
|
75 |
-
df_pred["pred"].head(3).plot(ax=pic[0], kind="pie",
|
76 |
-
cmap="Set2", labels=ti, explode=(0.02, 0, 0),
|
77 |
-
wedgeprops=dict(width=.4))
|
78 |
-
df2["pred"].head(2).plot(ax=pic[1], kind="pie",
|
79 |
-
colors=["cornflowerblue", "darkorange"], labels=ti2, explode=(0.02, 0),
|
80 |
-
wedgeprops=dict(width=.4))
|
81 |
-
|
82 |
-
t = str(ti[0]) + ": " + str(numpy.round(df_pred.head(1).pred.values[0] * 100, 2)) + "% de predicción"
|
83 |
-
pic[0].set_title(t, fontsize=14.0, fontweight="bold")
|
84 |
-
pic[0].axis('off')
|
85 |
-
pic[0].legend(ti, loc="lower right", title="Cáncer de Piel: ")
|
86 |
-
|
87 |
-
k0 = numpy.round(df2.head(1).pred.values[0] * 100, 2)
|
88 |
-
k1 = numpy.round(df2.tail(1).pred.values[0] * 100, 2)
|
89 |
-
if k0 > k1:
|
90 |
-
t2 = str(ti2[0]) + ": " + str(k0) + "% de predicción"
|
91 |
-
else:
|
92 |
-
t2 = str(ti2[1]) + ": " + str(k1) + "% de predicción"
|
93 |
-
pic[1].set_title(t2, fontsize=14.0, fontweight="bold")
|
94 |
-
pic[1].axis('off')
|
95 |
-
pic[1].legend(ti2, loc="lower right", title="Prediccíon Cáncer de Piel:")
|
96 |
-
|
97 |
-
canvas.tight_layout()
|
98 |
-
return canvas
|
99 |
-
|
100 |
-
def predict_donut(self, img):
|
101 |
-
d = self._predict_image(img, self.categories)
|
102 |
-
df = pandas.DataFrame(d, index=[0])
|
103 |
-
df = df.transpose().reset_index()
|
104 |
-
df.columns = ["vocab", "pred"]
|
105 |
-
df.sort_values("pred", inplace=True, ascending=False, ignore_index=True)
|
106 |
-
|
107 |
-
d2 = self._predict_image2(img, self.categories2)
|
108 |
-
df2 = pandas.DataFrame(d2, index=[0])
|
109 |
-
df2 = df2.transpose().reset_index()
|
110 |
-
df2.columns = ["vocab", "pred"]
|
111 |
-
|
112 |
-
canvas = self._draw_pred(df, df2)
|
113 |
-
return canvas
|
114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
maxi = ADA_SKIN(verbose=False)
|
116 |
|
|
|
117 |
learn = fastai.learner.load_learner('ada_learn_skin_norm2000.pkl')
|
118 |
learn2 = fastai.learner.load_learner('ada_learn_malben.pkl')
|
119 |
maxi.categories = learn.dls.vocab
|
120 |
maxi.categories2 = learn2.dls.vocab
|
121 |
-
hf_image = gradio.inputs.Image(shape=(192, 192))
|
122 |
-
hf_label = gradio.outputs.Label()
|
123 |
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
-
intf.launch(inline=False, share=True)
|
133 |
|
|
|
1 |
import fastai
|
|
|
2 |
import PIL
|
3 |
+
import gradio as gr
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import numpy as np
|
6 |
+
import pandas as pd
|
7 |
from fastai.vision.all import *
|
8 |
|
9 |
# Crear la clase
|
10 |
class ADA_SKIN(object):
|
11 |
|
12 |
+
# Inicializar el objeto
|
13 |
+
def __init__(self, name="Wallaby", verbose=True, *args, **kwargs):
|
14 |
+
super(ADA_SKIN, self).__init__(*args, **kwargs)
|
15 |
+
self.author = "Jey"
|
16 |
+
self.name = name
|
17 |
+
if verbose:
|
18 |
+
self._ph()
|
19 |
+
self._pp("Hola desde la clase", str(self.__class__) + " Clase: " + str(self.__class__.__name__))
|
20 |
+
self._pp("Nombre del código", self.name)
|
21 |
+
self._pp("Autor", self.author)
|
22 |
+
self._ph()
|
23 |
+
|
24 |
+
self.article = '<h3>Predice las siguientes patologias en piel</h3><ol>'
|
25 |
+
self.article += '<li>Enfermedad de Bowen (AKIEC)</li>'
|
26 |
+
self.article += '<li>Carcinoma de células basales</li>'
|
27 |
+
self.article += '<li>Lesiones benignas similares a queratosis</li>'
|
28 |
+
self.article += '<li>Dermatofibroma</li>'
|
29 |
+
self.article += '<li>Melanoma</li>'
|
30 |
+
self.article += '<li>Lunares melanocíticos</li>'
|
31 |
+
self.article += '<li>Carcinoma de células escamosas</li>'
|
32 |
+
self.article += '<li>Lesiones vasculares</li>'
|
33 |
+
self.article += '<li>Benigno</li>'
|
34 |
+
self.article += '<li></li></ol>'
|
35 |
+
self.article += '<h3> Prueba Jey(2023)</h3><ul>'
|
36 |
+
self.examples = ['akiec1.jpg','bcc1.jpg','bkl1.jpg','df1.jpg','mel1.jpg',
|
37 |
+
'nevi1.jpg','scc1.jpg','vl1.jpg','benign1.jpg','benign3.jpg']
|
38 |
+
self.title = "Predicción Cáncer de Piel prueba "
|
39 |
+
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
+
# Imprimir de manera legible el nombre y valor de una línea
|
42 |
+
def _pp(self, a, b):
|
43 |
+
print("%34s : %s" % (str(a), str(b)))
|
44 |
+
return
|
45 |
+
|
46 |
+
# Imprimir la línea de encabezado o pie de página
|
47 |
+
def _ph(self):
|
48 |
+
print("-" * 34, ":", "-" * 34)
|
49 |
+
return
|
50 |
+
|
51 |
+
def _predict_image(self, img, cat):
|
52 |
+
pred, idx, probs = learn.predict(img)
|
53 |
+
return dict(zip(cat, map(float, probs)))
|
54 |
+
|
55 |
+
def _predict_image2(self, img, cat):
|
56 |
+
pred, idx, probs = learn2.predict(img)
|
57 |
+
return dict(zip(cat, map(float, probs)))
|
58 |
+
|
59 |
+
def _draw_pred(self, df_pred, df2):
|
60 |
+
fig, pic = plt.subplots(1, 2, figsize=(12, 6))
|
61 |
+
ti = df_pred["vocab"].head(3).values
|
62 |
+
ti2 = df2["vocab"].head(2).values
|
63 |
+
|
64 |
+
try:
|
65 |
+
df_pred["pred"].head(3).plot(ax=pic[0], kind="pie",
|
66 |
+
cmap="Set2", labels=ti, explode=(0.02, 0, 0),
|
67 |
+
wedgeprops=dict(width=.4),
|
68 |
+
normalize=False)
|
69 |
+
df2["pred"].head(2).plot(ax=pic[1], kind="pie",
|
70 |
+
colors=["cornflowerblue", "darkorange"], labels=ti2, explode=(0.02, 0),
|
71 |
+
wedgeprops=dict(width=.4),
|
72 |
+
normalize=False)
|
73 |
+
except:
|
74 |
+
df_pred["pred"].head(3).plot(ax=pic[0], kind="pie",
|
75 |
+
cmap="Set2", labels=ti, explode=(0.02, 0, 0),
|
76 |
+
wedgeprops=dict(width=.4))
|
77 |
+
df2["pred"].head(2).plot(ax=pic[1], kind="pie",
|
78 |
+
colors=["cornflowerblue", "darkorange"], labels=ti2, explode=(0.02, 0),
|
79 |
+
wedgeprops=dict(width=.4))
|
80 |
+
|
81 |
+
t = str(ti[0]) + ": " + str(np.round(df_pred.head(1).pred.values[0] * 100, 2)) + "% de predicción"
|
82 |
+
pic[0].set_title(t, fontsize=14.0, fontweight="bold")
|
83 |
+
pic[0].axis('off')
|
84 |
+
pic[0].legend(ti, loc="lower right", title="Cáncer de Piel: ")
|
85 |
+
|
86 |
+
k0 = np.round(df2.head(1).pred.values[0] * 100, 2)
|
87 |
+
k1 = np.round(df2.tail(1).pred.values[0] * 100, 2)
|
88 |
+
if k0 > k1:
|
89 |
+
t2 = str(ti2[0]) + ": " + str(k0) + "% de predicción"
|
90 |
+
else:
|
91 |
+
t2 = str(ti2[1]) + ": " + str(k1) + "% de predicción"
|
92 |
+
pic[1].set_title(t2, fontsize=14.0, fontweight="bold")
|
93 |
+
pic[1].axis('off')
|
94 |
+
pic[1].legend(ti2, loc="lower right", title="Predicción Cáncer de Piel:")
|
95 |
+
|
96 |
+
fig.tight_layout()
|
97 |
+
return fig
|
98 |
+
|
99 |
+
def predict_donut(self, img):
|
100 |
+
d = self._predict_image(img, self.categories)
|
101 |
+
df = pd.DataFrame(d, index=[0])
|
102 |
+
df = df.transpose().reset_index()
|
103 |
+
df.columns = ["vocab", "pred"]
|
104 |
+
df.sort_values("pred", inplace=True, ascending=False, ignore_index=True)
|
105 |
+
|
106 |
+
d2 = self._predict_image2(img, self.categories2)
|
107 |
+
df2 = pd.DataFrame(d2, index=[0])
|
108 |
+
df2 = df2.transpose().reset_index()
|
109 |
+
df2.columns = ["vocab", "pred"]
|
110 |
+
|
111 |
+
fig = self._draw_pred(df, df2)
|
112 |
+
return fig
|
113 |
+
|
114 |
+
# Inicializar el objeto ADA_SKIN
|
115 |
maxi = ADA_SKIN(verbose=False)
|
116 |
|
117 |
+
# Cargar modelos
|
118 |
learn = fastai.learner.load_learner('ada_learn_skin_norm2000.pkl')
|
119 |
learn2 = fastai.learner.load_learner('ada_learn_malben.pkl')
|
120 |
maxi.categories = learn.dls.vocab
|
121 |
maxi.categories2 = learn2.dls.vocab
|
|
|
|
|
122 |
|
123 |
+
# Crear la interfaz de Gradio
|
124 |
+
hf_image = gr.inputs.Image(type='pil', shape=(192, 192))
|
125 |
+
hf_plot = gr.outputs.Plot()
|
126 |
+
|
127 |
+
intf = gr.Interface(fn=maxi.predict_donut,
|
128 |
+
inputs=hf_image,
|
129 |
+
outputs=hf_plot,
|
130 |
+
examples=maxi.examples,
|
131 |
+
title=maxi.title,
|
132 |
+
live=True,
|
133 |
+
article=maxi.article)
|
134 |
+
|
135 |
+
# Lanzar la interfaz
|
136 |
+
intf.launch(sh
|
137 |
|
|
|
138 |
|