Iker commited on
Commit
911ab5a
1 Parent(s): fbc4e83

Add support for SMALL100 and update examples

Browse files
examples/Alpaca-Lora.sh CHANGED
@@ -1,8 +1,6 @@
1
  # Run Alpaca-Lora (A LoRA model) model on sample text using prompting
2
  # We need to set the base model with --model_name and the LoRA weights with --lora_weights_name_or_path
3
 
4
- cd ..
5
-
6
  python3 translate.py \
7
  --sentences_path sample_text/en.txt \
8
  --output_path sample_text/en2es.AlpacaLora.translation.txt \
 
1
  # Run Alpaca-Lora (A LoRA model) model on sample text using prompting
2
  # We need to set the base model with --model_name and the LoRA weights with --lora_weights_name_or_path
3
 
 
 
4
  python3 translate.py \
5
  --sentences_path sample_text/en.txt \
6
  --output_path sample_text/en2es.AlpacaLora.translation.txt \
examples/FlanT5-large.sh CHANGED
@@ -1,7 +1,5 @@
1
  # Run Flan-T5 model on sample text using promting
2
 
3
- cd ..
4
-
5
  python3 translate.py \
6
  --sentences_path sample_text/en.txt \
7
  --output_path sample_text/en2es.FlanT5.translation.txt \
 
1
  # Run Flan-T5 model on sample text using promting
2
 
 
 
3
  python3 translate.py \
4
  --sentences_path sample_text/en.txt \
5
  --output_path sample_text/en2es.FlanT5.translation.txt \
examples/LLaMA.sh CHANGED
@@ -1,7 +1,5 @@
1
  # Run LLaMA65B model on sample text using prompting
2
 
3
- cd ..
4
-
5
  python3 translate.py \
6
  --sentences_path sample_text/en.txt \
7
  --output_path sample_text/en2es.LLaMA.translation.txt \
 
1
  # Run LLaMA65B model on sample text using prompting
2
 
 
 
3
  python3 translate.py \
4
  --sentences_path sample_text/en.txt \
5
  --output_path sample_text/en2es.LLaMA.translation.txt \
examples/README.md CHANGED
@@ -3,6 +3,8 @@
3
  This folder contains examples of how to use Easy-Translate with different models and configurations.
4
  You can adapt these examples to your own use cases. If you have any questions, please feel free to open an issue.
5
 
 
 
6
  ### MT Models
7
 
8
  ```bash
 
3
  This folder contains examples of how to use Easy-Translate with different models and configurations.
4
  You can adapt these examples to your own use cases. If you have any questions, please feel free to open an issue.
5
 
6
+ > Run the examples from the root of the Easy-Translate repository as follows: `sh examples/<example>.sh`
7
+
8
  ### MT Models
9
 
10
  ```bash
examples/Vicuna.sh CHANGED
@@ -4,8 +4,6 @@
4
  # lmsys/vicuna-13b-v1.3
5
  # lmsys/vicuna-7b-v1.3
6
 
7
- cd ..
8
-
9
  python3 translate.py \
10
  --sentences_path sample_text/en.txt \
11
  --output_path sample_text/en2es.Vicuna33B.translation.txt \
 
4
  # lmsys/vicuna-13b-v1.3
5
  # lmsys/vicuna-7b-v1.3
6
 
 
 
7
  python3 translate.py \
8
  --sentences_path sample_text/en.txt \
9
  --output_path sample_text/en2es.Vicuna33B.translation.txt \
examples/m2m100-1.2B.sh CHANGED
@@ -1,7 +1,5 @@
1
  # Run M2M100-1.2B model on sample text. One GPU, default precision.
2
 
3
- cd ..
4
-
5
  python3 translate.py \
6
  --sentences_path sample_text/en.txt \
7
  --output_path sample_text/en2es.translation.m2m100_1.2B.txt \
 
1
  # Run M2M100-1.2B model on sample text. One GPU, default precision.
2
 
 
 
3
  python3 translate.py \
4
  --sentences_path sample_text/en.txt \
5
  --output_path sample_text/en2es.translation.m2m100_1.2B.txt \
examples/m2m100-1.2B_2GPUS.sh CHANGED
@@ -1,7 +1,5 @@
1
  # Run M2M100-1.2B model on sample text. Multi GPU, default precision.
2
 
3
- cd ..
4
-
5
  accelerate launch --multi_gpu --num_processes 2 --num_machines 1 translate.py \
6
  --sentences_path sample_text/en.txt \
7
  --output_path sample_text/en2es.translation.m2m100_1.2B.txt \
 
1
  # Run M2M100-1.2B model on sample text. Multi GPU, default precision.
2
 
 
 
3
  accelerate launch --multi_gpu --num_processes 2 --num_machines 1 translate.py \
4
  --sentences_path sample_text/en.txt \
5
  --output_path sample_text/en2es.translation.m2m100_1.2B.txt \
examples/m2m100-12B_8bit.sh CHANGED
@@ -3,8 +3,6 @@
3
  # with a lot of RAM, running the model in FP16 should be faster and produce sighly better results,
4
  # see examples/m2m100-12B_fp16.sh
5
 
6
- cd ..
7
-
8
  python3 translate.py \
9
  --sentences_path sample_text/en.txt \
10
  --output_path sample_text/en2es.translation.m2m100_12B.txt \
 
3
  # with a lot of RAM, running the model in FP16 should be faster and produce sighly better results,
4
  # see examples/m2m100-12B_fp16.sh
5
 
 
 
6
  python3 translate.py \
7
  --sentences_path sample_text/en.txt \
8
  --output_path sample_text/en2es.translation.m2m100_12B.txt \
examples/m2m100-12B_fp16.sh CHANGED
@@ -1,8 +1,6 @@
1
  # Run M2M100-1.2B model on sample text. We use FP16 precision, which requires a GPU with a lot of VRAM (i.e NVIDIA A100)
2
  # For running this model in customer grade GPUs, use 8-bit quantization, see examples/m2m100-12B_8bit.sh
3
 
4
- cd ..
5
-
6
  python3 translate.py \
7
  --sentences_path sample_text/en.txt \
8
  --output_path sample_text/en2es.translation.m2m100_12B.txt \
 
1
  # Run M2M100-1.2B model on sample text. We use FP16 precision, which requires a GPU with a lot of VRAM (i.e NVIDIA A100)
2
  # For running this model in customer grade GPUs, use 8-bit quantization, see examples/m2m100-12B_8bit.sh
3
 
 
 
4
  python3 translate.py \
5
  --sentences_path sample_text/en.txt \
6
  --output_path sample_text/en2es.translation.m2m100_12B.txt \
examples/mbart.sh CHANGED
@@ -1,10 +1,8 @@
1
  # Run Mbart-many-to-many model on sample text.
2
 
3
- cd ..
4
-
5
  python3 translate.py \
6
  --sentences_path sample_text/en.txt \
7
- --output_path sample_text/en2es.translation.mbart.txt \
8
  --source_lang en_XX \
9
  --target_lang es_XX \
10
  --model_name facebook/mbart-large-50-many-to-many-mmt
 
1
  # Run Mbart-many-to-many model on sample text.
2
 
 
 
3
  python3 translate.py \
4
  --sentences_path sample_text/en.txt \
5
+ --output_path sample_text/en2es.translation.mbart50_m2m.txt \
6
  --source_lang en_XX \
7
  --target_lang es_XX \
8
  --model_name facebook/mbart-large-50-many-to-many-mmt
examples/nllb200-moe-54B_1GPU_4bits.sh CHANGED
@@ -2,9 +2,6 @@
2
  # 4-bit quantization to reduce the required VRAM. Still it might not fit on a single GPU, so we also use
3
  # the --force_auto_device_map flag that will offload the model parameters that don't fit on the GPU to the CPU.
4
 
5
-
6
- cd ..
7
-
8
  python3 translate.py \
9
  --sentences_path sample_text/en.txt \
10
  --output_path sample_text/en2es.translation.nllb200-moe-54B.txt \
 
2
  # 4-bit quantization to reduce the required VRAM. Still it might not fit on a single GPU, so we also use
3
  # the --force_auto_device_map flag that will offload the model parameters that don't fit on the GPU to the CPU.
4
 
 
 
 
5
  python3 translate.py \
6
  --sentences_path sample_text/en.txt \
7
  --output_path sample_text/en2es.translation.nllb200-moe-54B.txt \
examples/nllb200-moe-54B_1GPU_8bits.sh CHANGED
@@ -3,8 +3,6 @@
3
  # the --force_auto_device_map flag that will offload the model parameters that don't fit on the GPU to the CPU.
4
  # If 8-bit quantization is not enough, you can use 4-bit quantization, see examples/nllb200-moe-54B_1GPU_4bits.sh
5
 
6
- cd ..
7
-
8
  python3 translate.py \
9
  --sentences_path sample_text/en.txt \
10
  --output_path sample_text/en2es.translation.nllb200-moe-54B.txt \
 
3
  # the --force_auto_device_map flag that will offload the model parameters that don't fit on the GPU to the CPU.
4
  # If 8-bit quantization is not enough, you can use 4-bit quantization, see examples/nllb200-moe-54B_1GPU_4bits.sh
5
 
 
 
6
  python3 translate.py \
7
  --sentences_path sample_text/en.txt \
8
  --output_path sample_text/en2es.translation.nllb200-moe-54B.txt \
examples/nllb200_3B_8bit.sh CHANGED
@@ -1,8 +1,6 @@
1
  # Run NLLB200-3B model on sample text. We use FP16 precision, which requires a GPU with a lot of VRAM
2
  # For running this model in GPUs with less VRAM, use 8-bit quantization, see examples/nllb200_3B_8bit.sh
3
 
4
- cd ..
5
-
6
  python3 translate.py \
7
  --sentences_path sample_text/en.txt \
8
  --output_path sample_text/en2es.translation.nllb-200_3B.txt \
 
1
  # Run NLLB200-3B model on sample text. We use FP16 precision, which requires a GPU with a lot of VRAM
2
  # For running this model in GPUs with less VRAM, use 8-bit quantization, see examples/nllb200_3B_8bit.sh
3
 
 
 
4
  python3 translate.py \
5
  --sentences_path sample_text/en.txt \
6
  --output_path sample_text/en2es.translation.nllb-200_3B.txt \
examples/nllb200_3B_fp16.sh CHANGED
@@ -1,8 +1,6 @@
1
  # Run NLLB200-3B model on sample text. We use FP16 precision, which requires a GPU with a lot of VRAM
2
  # For running this model in GPUs with less VRAM, use 8-bit quantization, see examples/nllb200_3B_8bit.sh
3
 
4
- cd ..
5
-
6
  python3 translate.py \
7
  --sentences_path sample_text/en.txt \
8
  --output_path sample_text/en2es.translation.nllb-200_3B.txt \
 
1
  # Run NLLB200-3B model on sample text. We use FP16 precision, which requires a GPU with a lot of VRAM
2
  # For running this model in GPUs with less VRAM, use 8-bit quantization, see examples/nllb200_3B_8bit.sh
3
 
 
 
4
  python3 translate.py \
5
  --sentences_path sample_text/en.txt \
6
  --output_path sample_text/en2es.translation.nllb-200_3B.txt \
examples/opusMT.sh CHANGED
@@ -1,8 +1,6 @@
1
  # Run OpusMT model on sample text.
2
 
3
- cd ..
4
-
5
  python3 translate.py \
6
  --sentences_path sample_text/en.txt \
7
- --output_path sample_text/en2es.translation.opus.txt \
8
- --model_name Helsinki-NLP/opus-mt-es-en
 
1
  # Run OpusMT model on sample text.
2
 
 
 
3
  python3 translate.py \
4
  --sentences_path sample_text/en.txt \
5
+ --output_path sample_text/en2es.translation.opusMT.txt \
6
+ --model_name Helsinki-NLP/opus-mt-en-es
examples/small100.sh CHANGED
@@ -1,7 +1,5 @@
1
  # Run SMALL100 model on sample text.
2
 
3
- cd ..
4
-
5
  python3 translate.py \
6
  --sentences_path sample_text/en.txt \
7
  --output_path sample_text/en2es.translation.small100.txt \
 
1
  # Run SMALL100 model on sample text.
2
 
 
 
3
  python3 translate.py \
4
  --sentences_path sample_text/en.txt \
5
  --output_path sample_text/en2es.translation.small100.txt \
model.py CHANGED
@@ -2,7 +2,6 @@ from transformers import (
2
  AutoConfig,
3
  AutoModelForCausalLM,
4
  AutoModelForSeq2SeqLM,
5
- AutoTokenizer,
6
  BitsAndBytesConfig,
7
  PreTrainedModel,
8
  PreTrainedTokenizerBase,
@@ -84,6 +83,12 @@ def load_model_for_inference(
84
  torch_dtype if torch_dtype in ["auto", None] else getattr(torch, torch_dtype)
85
  )
86
 
 
 
 
 
 
 
87
  tokenizer: PreTrainedTokenizerBase = AutoTokenizer.from_pretrained(
88
  weights_path,
89
  add_eos_token=True,
 
2
  AutoConfig,
3
  AutoModelForCausalLM,
4
  AutoModelForSeq2SeqLM,
 
5
  BitsAndBytesConfig,
6
  PreTrainedModel,
7
  PreTrainedTokenizerBase,
 
83
  torch_dtype if torch_dtype in ["auto", None] else getattr(torch, torch_dtype)
84
  )
85
 
86
+ if "small100" in weights_path:
87
+ print(f"Loading custom small100 tokenizer for utils.tokenization_small100")
88
+ from utils.tokenization_small100 import SMALL100Tokenizer as AutoTokenizer
89
+ else:
90
+ from transformers import AutoTokenizer
91
+
92
  tokenizer: PreTrainedTokenizerBase = AutoTokenizer.from_pretrained(
93
  weights_path,
94
  add_eos_token=True,
sample_text/en2es.m2m100_1.2B.json CHANGED
@@ -1,12 +1,12 @@
1
  {
2
  "path": "sample_text/en2es.translation.m2m100_1.2B.txt",
3
  "sacrebleu": {
4
- "score": 32.14645334893687,
5
  "counts": [
6
- 19160,
7
- 11392,
8
- 7558,
9
- 5186
10
  ],
11
  "totals": [
12
  30102,
@@ -15,28 +15,28 @@
15
  27106
16
  ],
17
  "precisions": [
18
- 63.65025579695701,
19
- 39.145075939797955,
20
- 26.89296897238827,
21
- 19.13229543274552
22
  ],
23
  "bp": 0.9553495084330463,
24
  "sys_len": 30102,
25
  "ref_len": 31477
26
  },
27
  "rouge": {
28
- "rouge1": 0.6031630371962684,
29
- "rouge2": 0.38939154291666417,
30
- "rougeL": 0.5515330844231945,
31
- "rougeLsum": 0.5523095078982578
32
  },
33
  "bleu": {
34
- "bleu": 0.3214645334893687,
35
  "precisions": [
36
- 0.6365025579695701,
37
- 0.3914507593979795,
38
- 0.2689296897238827,
39
- 0.19132295432745516
40
  ],
41
  "brevity_penalty": 0.9553495084330461,
42
  "length_ratio": 0.9563173110525145,
@@ -44,17 +44,17 @@
44
  "reference_length": 31477
45
  },
46
  "meteor": {
47
- "meteor": 0.5592932008785984
48
  },
49
  "ter": {
50
- "score": 56.87645687645687,
51
- "num_edits": 16104,
52
  "ref_length": 28314.0
53
  },
54
  "bert_score": {
55
- "precision": 0.8262958707809448,
56
- "recall": 0.8192555149793624,
57
- "f1": 0.8223544662296772,
58
  "hashcode": "microsoft/deberta-xlarge-mnli_L40_no-idf_version=0.3.12(hug_trans=4.30.0.dev0)_fast-tokenizer"
59
  }
60
  }
 
1
  {
2
  "path": "sample_text/en2es.translation.m2m100_1.2B.txt",
3
  "sacrebleu": {
4
+ "score": 32.15019121336132,
5
  "counts": [
6
+ 19161,
7
+ 11393,
8
+ 7559,
9
+ 5187
10
  ],
11
  "totals": [
12
  30102,
 
15
  27106
16
  ],
17
  "precisions": [
18
+ 63.653577835359776,
19
+ 39.148512129750536,
20
+ 26.896527184742386,
21
+ 19.13598465284439
22
  ],
23
  "bp": 0.9553495084330463,
24
  "sys_len": 30102,
25
  "ref_len": 31477
26
  },
27
  "rouge": {
28
+ "rouge1": 0.602850264212381,
29
+ "rouge2": 0.38933908070548573,
30
+ "rougeL": 0.5520611983269869,
31
+ "rougeLsum": 0.5520263175872622
32
  },
33
  "bleu": {
34
+ "bleu": 0.32150191213361295,
35
  "precisions": [
36
+ 0.6365357783535978,
37
+ 0.39148512129750535,
38
+ 0.26896527184742386,
39
+ 0.1913598465284439
40
  ],
41
  "brevity_penalty": 0.9553495084330461,
42
  "length_ratio": 0.9563173110525145,
 
44
  "reference_length": 31477
45
  },
46
  "meteor": {
47
+ "meteor": 0.559313673095486
48
  },
49
  "ter": {
50
+ "score": 56.87292505474324,
51
+ "num_edits": 16103,
52
  "ref_length": 28314.0
53
  },
54
  "bert_score": {
55
+ "precision": 0.8262975588142872,
56
+ "recall": 0.8192616358399392,
57
+ "f1": 0.8223584635257721,
58
  "hashcode": "microsoft/deberta-xlarge-mnli_L40_no-idf_version=0.3.12(hug_trans=4.30.0.dev0)_fast-tokenizer"
59
  }
60
  }
sample_text/en2es.mbart50_m2m.json ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "path": "sample_text/en2es.translation.mbart50_m2m.txt",
3
+ "sacrebleu": {
4
+ "score": 34.312443769569654,
5
+ "counts": [
6
+ 19844,
7
+ 12131,
8
+ 8189,
9
+ 5651
10
+ ],
11
+ "totals": [
12
+ 31140,
13
+ 30140,
14
+ 29140,
15
+ 28140
16
+ ],
17
+ "precisions": [
18
+ 63.72511239563263,
19
+ 40.24883875248839,
20
+ 28.10226492793411,
21
+ 20.081734186211797
22
+ ],
23
+ "bp": 0.9892362544138555,
24
+ "sys_len": 31140,
25
+ "ref_len": 31477
26
+ },
27
+ "rouge": {
28
+ "rouge1": 0.6159604817857698,
29
+ "rouge2": 0.4073511703525804,
30
+ "rougeL": 0.5660722931147588,
31
+ "rougeLsum": 0.5660998611201875
32
+ },
33
+ "bleu": {
34
+ "bleu": 0.3431244376956965,
35
+ "precisions": [
36
+ 0.6372511239563262,
37
+ 0.40248838752488386,
38
+ 0.2810226492793411,
39
+ 0.20081734186211797
40
+ ],
41
+ "brevity_penalty": 0.9892362544138555,
42
+ "length_ratio": 0.9892937700543254,
43
+ "translation_length": 31140,
44
+ "reference_length": 31477
45
+ },
46
+ "meteor": {
47
+ "meteor": 0.5778973538427097
48
+ },
49
+ "ter": {
50
+ "score": 56.014692378328746,
51
+ "num_edits": 15860,
52
+ "ref_length": 28314.0
53
+ },
54
+ "bert_score": {
55
+ "precision": 0.8280336964726448,
56
+ "recall": 0.8266492820978165,
57
+ "f1": 0.8269554697275162,
58
+ "hashcode": "microsoft/deberta-xlarge-mnli_L40_no-idf_version=0.3.12(hug_trans=4.30.0.dev0)_fast-tokenizer"
59
+ }
60
+ }
sample_text/en2es.nllb-200_3B.json ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "path": "sample_text/en2es.translation.nllb-200_3B.txt",
3
+ "sacrebleu": {
4
+ "score": 36.1806558580766,
5
+ "counts": [
6
+ 20331,
7
+ 12688,
8
+ 8717,
9
+ 6126
10
+ ],
11
+ "totals": [
12
+ 31189,
13
+ 30189,
14
+ 29189,
15
+ 28189
16
+ ],
17
+ "precisions": [
18
+ 65.18644393856809,
19
+ 42.02855344661963,
20
+ 29.86398985919353,
21
+ 21.731881230267124
22
+ ],
23
+ "bp": 0.9908084778664968,
24
+ "sys_len": 31189,
25
+ "ref_len": 31477
26
+ },
27
+ "rouge": {
28
+ "rouge1": 0.6296302993105114,
29
+ "rouge2": 0.4251646068510136,
30
+ "rougeL": 0.581729073803074,
31
+ "rougeLsum": 0.5819048504270989
32
+ },
33
+ "bleu": {
34
+ "bleu": 0.361806558580766,
35
+ "precisions": [
36
+ 0.6518644393856808,
37
+ 0.4202855344661963,
38
+ 0.2986398985919353,
39
+ 0.21731881230267125
40
+ ],
41
+ "brevity_penalty": 0.9908084778664968,
42
+ "length_ratio": 0.9908504622422721,
43
+ "translation_length": 31189,
44
+ "reference_length": 31477
45
+ },
46
+ "meteor": {
47
+ "meteor": 0.5972263887277424
48
+ },
49
+ "ter": {
50
+ "score": 54.04040404040404,
51
+ "num_edits": 15301,
52
+ "ref_length": 28314.0
53
+ },
54
+ "bert_score": {
55
+ "precision": 0.8332746320664882,
56
+ "recall": 0.8329256139397622,
57
+ "f1": 0.8327405597269535,
58
+ "hashcode": "microsoft/deberta-xlarge-mnli_L40_no-idf_version=0.3.12(hug_trans=4.30.0.dev0)_fast-tokenizer"
59
+ }
60
+ }
sample_text/en2es.opusMT.json ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "path": "sample_text/en2es.translation.opusMT.txt",
3
+ "sacrebleu": {
4
+ "score": 36.43661473091549,
5
+ "counts": [
6
+ 20325,
7
+ 12744,
8
+ 8795,
9
+ 6218
10
+ ],
11
+ "totals": [
12
+ 31138,
13
+ 30138,
14
+ 29138,
15
+ 28138
16
+ ],
17
+ "precisions": [
18
+ 65.27394180743785,
19
+ 42.28548676089986,
20
+ 30.183952227332007,
21
+ 22.098230151396688
22
+ ],
23
+ "bp": 0.989172030031952,
24
+ "sys_len": 31138,
25
+ "ref_len": 31477
26
+ },
27
+ "rouge": {
28
+ "rouge1": 0.635226089622703,
29
+ "rouge2": 0.43519113055921854,
30
+ "rougeL": 0.5866361740266497,
31
+ "rougeLsum": 0.5868857224203005
32
+ },
33
+ "bleu": {
34
+ "bleu": 0.3643661473091548,
35
+ "precisions": [
36
+ 0.6527394180743785,
37
+ 0.4228548676089986,
38
+ 0.30183952227332006,
39
+ 0.2209823015139669
40
+ ],
41
+ "brevity_penalty": 0.989172030031952,
42
+ "length_ratio": 0.9892302315976745,
43
+ "translation_length": 31138,
44
+ "reference_length": 31477
45
+ },
46
+ "meteor": {
47
+ "meteor": 0.5999046031429729
48
+ },
49
+ "ter": {
50
+ "score": 53.69075369075369,
51
+ "num_edits": 15202,
52
+ "ref_length": 28314.0
53
+ },
54
+ "bert_score": {
55
+ "precision": 0.8365356454253197,
56
+ "recall": 0.8347951875030994,
57
+ "f1": 0.8353308997601271,
58
+ "hashcode": "microsoft/deberta-xlarge-mnli_L40_no-idf_version=0.3.12(hug_trans=4.30.0.dev0)_fast-tokenizer"
59
+ }
60
+ }
sample_text/en2es.small100.json ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "path": "sample_text/en2es.translation.small100.txt",
3
+ "sacrebleu": {
4
+ "score": 30.053582066546088,
5
+ "counts": [
6
+ 18913,
7
+ 10845,
8
+ 6942,
9
+ 4595
10
+ ],
11
+ "totals": [
12
+ 30637,
13
+ 29637,
14
+ 28638,
15
+ 27639
16
+ ],
17
+ "precisions": [
18
+ 61.73254561477952,
19
+ 36.59277254782873,
20
+ 24.240519589356797,
21
+ 16.625058793733494
22
+ ],
23
+ "bp": 0.9729546287833154,
24
+ "sys_len": 30637,
25
+ "ref_len": 31477
26
+ },
27
+ "rouge": {
28
+ "rouge1": 0.5870210774800202,
29
+ "rouge2": 0.3676688593672182,
30
+ "rougeL": 0.5358577025466011,
31
+ "rougeLsum": 0.5354834368959198
32
+ },
33
+ "bleu": {
34
+ "bleu": 0.30053582066546075,
35
+ "precisions": [
36
+ 0.6173254561477951,
37
+ 0.3659277254782873,
38
+ 0.242405195893568,
39
+ 0.16625058793733494
40
+ ],
41
+ "brevity_penalty": 0.9729546287833154,
42
+ "length_ratio": 0.973313848206627,
43
+ "translation_length": 30637,
44
+ "reference_length": 31477
45
+ },
46
+ "meteor": {
47
+ "meteor": 0.5421271958584509
48
+ },
49
+ "ter": {
50
+ "score": 58.49049939959031,
51
+ "num_edits": 16561,
52
+ "ref_length": 28314.0
53
+ },
54
+ "bert_score": {
55
+ "precision": 0.8210419535636901,
56
+ "recall": 0.8172258196473121,
57
+ "f1": 0.8188223859369754,
58
+ "hashcode": "microsoft/deberta-xlarge-mnli_L40_no-idf_version=0.3.12(hug_trans=4.30.0.dev0)_fast-tokenizer"
59
+ }
60
+ }
sample_text/en2es.translation.m2m100_1.2B.txt CHANGED
@@ -87,7 +87,7 @@ Señor Presidente, quisiera hacer muy claro que, sobre todo, la Comisión tiene
87
  Por lo tanto, respetamos lo que el Parlamento pueda decidir.
88
  Pero también quisiera hacer muy claro que el presidente Prodi se ha comprometido con este Parlamento a introducir un nuevo debate, como nos ha recordado el señor Barón Crespo, que sería, además del debate anual sobre el programa legislativo de la Comisión, sobre los amplios ámbitos de acción para los próximos cinco años, es decir, para esta legislatura.
89
  El acuerdo alcanzado en septiembre distinguió este debate de la presentación anual del programa legislativo de la Comisión.
90
- También me gustaría decir que la Comisión está preparada y preparada para llevar a cabo este debate cuando sea conveniente y que estábamos listos para hacerlo esta semana como habíamos acordado originalmente, sobre la base de que sería presentado el día anterior en un discurso a los grupos parlamentarios.
91
  Por lo tanto, señora Presidenta, quisiera repetir que la Comisión ha debatido el plan de acción para los próximos cinco años y, cuando el Parlamento decida, - esta semana si esa es la decisión - estamos listos para venir y explicar el programa para los próximos cinco años y, el próximo mes, el programa para el año 2000, en lo que estábamos plenamente de acuerdo.
92
  Propongo que votemos a petición del Grupo del Partido Socialista Europeo para que se restablezca la declaración de la Comisión sobre sus objetivos estratégicos.
93
  (El Parlamento rechazó la solicitud) Presidente.
@@ -997,4 +997,4 @@ Quiero felicitarle, lamentablemente en su ausencia, por la forma exhaustiva y ri
997
  Él mencionó anteriormente que el informe se llevó a cabo con una mayoría significativa, pero no con mi apoyo.
998
  Por lo tanto, aunque no comparto sus conclusiones, creo que él ha ilustrado en su informe muchas de las cuestiones que la Comisión debe abordar.
999
  La primera es la posibilidad de renacentización de la política de competencia.
1000
- Sé que la Comisión se opone a esto, pero el potencial existe.
 
87
  Por lo tanto, respetamos lo que el Parlamento pueda decidir.
88
  Pero también quisiera hacer muy claro que el presidente Prodi se ha comprometido con este Parlamento a introducir un nuevo debate, como nos ha recordado el señor Barón Crespo, que sería, además del debate anual sobre el programa legislativo de la Comisión, sobre los amplios ámbitos de acción para los próximos cinco años, es decir, para esta legislatura.
89
  El acuerdo alcanzado en septiembre distinguió este debate de la presentación anual del programa legislativo de la Comisión.
90
+ También me gustaría decir que la Comisión está preparada y preparada para llevar a cabo este debate cuando sea conveniente y que estábamos listos para hacerlo esta semana como habíamos acordado originalmente, sobre la base de que se presentaría el día anterior en un discurso a los grupos parlamentarios.
91
  Por lo tanto, señora Presidenta, quisiera repetir que la Comisión ha debatido el plan de acción para los próximos cinco años y, cuando el Parlamento decida, - esta semana si esa es la decisión - estamos listos para venir y explicar el programa para los próximos cinco años y, el próximo mes, el programa para el año 2000, en lo que estábamos plenamente de acuerdo.
92
  Propongo que votemos a petición del Grupo del Partido Socialista Europeo para que se restablezca la declaración de la Comisión sobre sus objetivos estratégicos.
93
  (El Parlamento rechazó la solicitud) Presidente.
 
997
  Él mencionó anteriormente que el informe se llevó a cabo con una mayoría significativa, pero no con mi apoyo.
998
  Por lo tanto, aunque no comparto sus conclusiones, creo que él ha ilustrado en su informe muchas de las cuestiones que la Comisión debe abordar.
999
  La primera es la posibilidad de renacentización de la política de competencia.
1000
+ Sé que la Comisión se opone a esto, pero el potencial existe.
sample_text/en2es.translation.mbart50_m2m.txt ADDED
The diff for this file is too large to render. See raw diff
 
sample_text/en2es.translation.nllb-200_3B.txt ADDED
The diff for this file is too large to render. See raw diff
 
sample_text/en2es.translation.opusMT.txt ADDED
The diff for this file is too large to render. See raw diff
 
sample_text/en2es.translation.small100.txt ADDED
The diff for this file is too large to render. See raw diff
 
translate.py CHANGED
@@ -164,6 +164,10 @@ def main(
164
  raise KeyError(
165
  f"Language {target_lang} not found in tokenizer. Available languages: {tokenizer.lang_code_to_id.keys()}"
166
  )
 
 
 
 
167
 
168
  gen_kwargs = {
169
  "max_length": max_length,
@@ -187,7 +191,7 @@ def main(
187
  f"Output file: {output_path}\n"
188
  f"Source language: {source_lang}\n"
189
  f"Target language: {target_lang}\n"
190
- f"is_translation_model: {is_translation_model}\n"
191
  f"Prompt: {prompt}\n"
192
  f"Starting batch size: {starting_batch_size}\n"
193
  f"Device: {str(accelerator.device).split(':')[0]}\n"
 
164
  raise KeyError(
165
  f"Language {target_lang} not found in tokenizer. Available languages: {tokenizer.lang_code_to_id.keys()}"
166
  )
167
+ if "small100" in model_name:
168
+ tokenizer.tgt_lang = target_lang
169
+ # We don't need to force the BOS token, so we set is_translation_model to False
170
+ is_translation_model = False
171
 
172
  gen_kwargs = {
173
  "max_length": max_length,
 
191
  f"Output file: {output_path}\n"
192
  f"Source language: {source_lang}\n"
193
  f"Target language: {target_lang}\n"
194
+ f"Force target lang as BOS token: {is_translation_model}\n"
195
  f"Prompt: {prompt}\n"
196
  f"Starting batch size: {starting_batch_size}\n"
197
  f"Device: {str(accelerator.device).split(':')[0]}\n"
utils/tokenization_small100.py ADDED
@@ -0,0 +1,393 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2022 Idiap Research Institute, http://www.idiap.ch/
2
+ # Written by Alireza Mohammadshahi <alireza.mohammadshahi@idiap.ch>
3
+ # This is a modified version of https://github.com/huggingface/transformers/blob/main/src/transformers/models/m2m_100/tokenization_m2m_100.py
4
+ # which owns by Fariseq Authors and The HuggingFace Inc. team.
5
+ #
6
+ #
7
+ # Licensed under the Apache License, Version 2.0 (the "License");
8
+ # you may not use this file except in compliance with the License.
9
+ # You may obtain a copy of the License at
10
+ #
11
+ # http://www.apache.org/licenses/LICENSE-2.0
12
+ #
13
+ # Unless required by applicable law or agreed to in writing, software
14
+ # distributed under the License is distributed on an "AS IS" BASIS,
15
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16
+ # See the License for the specific language governing permissions and
17
+ # limitations under the License.
18
+ """Tokenization classes for SMALL100."""
19
+ import json
20
+ import os
21
+ from pathlib import Path
22
+ from shutil import copyfile
23
+ from typing import Any, Dict, List, Optional, Tuple, Union
24
+
25
+ import sentencepiece
26
+
27
+ from transformers.tokenization_utils import BatchEncoding, PreTrainedTokenizer
28
+ from transformers.utils import logging
29
+
30
+
31
+ logger = logging.get_logger(__name__)
32
+
33
+ SPIECE_UNDERLINE = "▁"
34
+
35
+ VOCAB_FILES_NAMES = {
36
+ "vocab_file": "vocab.json",
37
+ "spm_file": "sentencepiece.bpe.model",
38
+ "tokenizer_config_file": "tokenizer_config.json",
39
+ }
40
+
41
+ PRETRAINED_VOCAB_FILES_MAP = {
42
+ "vocab_file": {
43
+ "alirezamsh/small100": "https://huggingface.co/alirezamsh/small100/resolve/main/vocab.json",
44
+ },
45
+ "spm_file": {
46
+ "alirezamsh/small100": "https://huggingface.co/alirezamsh/small100/resolve/main/sentencepiece.bpe.model",
47
+ },
48
+ "tokenizer_config_file": {
49
+ "alirezamsh/small100": "https://huggingface.co/alirezamsh/small100/resolve/main/tokenizer_config.json",
50
+ },
51
+ }
52
+
53
+ PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
54
+ "alirezamsh/small100": 1024,
55
+ }
56
+
57
+ # fmt: off
58
+ FAIRSEQ_LANGUAGE_CODES = {
59
+ "m2m100": ["af", "am", "ar", "ast", "az", "ba", "be", "bg", "bn", "br", "bs", "ca", "ceb", "cs", "cy", "da", "de", "el", "en", "es", "et", "fa", "ff", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "ht", "hu", "hy", "id", "ig", "ilo", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "lb", "lg", "ln", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "ns", "oc", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sd", "si", "sk", "sl", "so", "sq", "sr", "ss", "su", "sv", "sw", "ta", "th", "tl", "tn", "tr", "uk", "ur", "uz", "vi", "wo", "xh", "yi", "yo", "zh", "zu"]
60
+ }
61
+ # fmt: on
62
+
63
+
64
+ class SMALL100Tokenizer(PreTrainedTokenizer):
65
+ """
66
+ Construct an SMALL100 tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
67
+ This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
68
+ this superclass for more information regarding those methods.
69
+ Args:
70
+ vocab_file (`str`):
71
+ Path to the vocabulary file.
72
+ spm_file (`str`):
73
+ Path to [SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm extension) that
74
+ contains the vocabulary.
75
+ tgt_lang (`str`, *optional*):
76
+ A string representing the target language.
77
+ eos_token (`str`, *optional*, defaults to `"</s>"`):
78
+ The end of sequence token.
79
+ sep_token (`str`, *optional*, defaults to `"</s>"`):
80
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
81
+ sequence classification or for a text and a question for question answering. It is also used as the last
82
+ token of a sequence built with special tokens.
83
+ unk_token (`str`, *optional*, defaults to `"<unk>"`):
84
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
85
+ token instead.
86
+ pad_token (`str`, *optional*, defaults to `"<pad>"`):
87
+ The token used for padding, for example when batching sequences of different lengths.
88
+ language_codes (`str`, *optional*):
89
+ What language codes to use. Should be `"m2m100"`.
90
+ sp_model_kwargs (`dict`, *optional*):
91
+ Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
92
+ SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
93
+ to set:
94
+ - `enable_sampling`: Enable subword regularization.
95
+ - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
96
+ - `nbest_size = {0,1}`: No sampling is performed.
97
+ - `nbest_size > 1`: samples from the nbest_size results.
98
+ - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
99
+ using forward-filtering-and-backward-sampling algorithm.
100
+ - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
101
+ BPE-dropout.
102
+ Examples:
103
+ ```python
104
+ \>>> from tokenization_small100 import SMALL100Tokenizer
105
+ \>>> tokenizer = SMALL100Tokenizer.from_pretrained("alirezamsh/small100", tgt_lang="ro")
106
+ \>>> src_text = " UN Chief Says There Is No Military Solution in Syria"
107
+ \>>> tgt_text = "Şeful ONU declară că nu există o soluţie militară în Siria"
108
+ \>>> model_inputs = tokenizer(src_text, text_target=tgt_text, return_tensors="pt")
109
+ \>>> model(**model_inputs) # should work
110
+ ```
111
+ """
112
+
113
+ vocab_files_names = VOCAB_FILES_NAMES
114
+ max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
115
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
116
+ model_input_names = ["input_ids", "attention_mask"]
117
+
118
+ prefix_tokens: List[int] = []
119
+ suffix_tokens: List[int] = []
120
+
121
+ def __init__(
122
+ self,
123
+ vocab_file,
124
+ spm_file,
125
+ tgt_lang=None,
126
+ bos_token="<s>",
127
+ eos_token="</s>",
128
+ sep_token="</s>",
129
+ pad_token="<pad>",
130
+ unk_token="<unk>",
131
+ language_codes="m2m100",
132
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
133
+ num_madeup_words=8,
134
+ **kwargs,
135
+ ) -> None:
136
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
137
+
138
+ self.language_codes = language_codes
139
+ fairseq_language_code = FAIRSEQ_LANGUAGE_CODES[language_codes]
140
+ self.lang_code_to_token = {
141
+ lang_code: f"__{lang_code}__" for lang_code in fairseq_language_code
142
+ }
143
+
144
+ kwargs["additional_special_tokens"] = kwargs.get(
145
+ "additional_special_tokens", []
146
+ )
147
+ kwargs["additional_special_tokens"] += [
148
+ self.get_lang_token(lang_code)
149
+ for lang_code in fairseq_language_code
150
+ if self.get_lang_token(lang_code) not in kwargs["additional_special_tokens"]
151
+ ]
152
+
153
+ super().__init__(
154
+ tgt_lang=tgt_lang,
155
+ bos_token=bos_token,
156
+ eos_token=eos_token,
157
+ sep_token=sep_token,
158
+ unk_token=unk_token,
159
+ pad_token=pad_token,
160
+ language_codes=language_codes,
161
+ sp_model_kwargs=self.sp_model_kwargs,
162
+ num_madeup_words=num_madeup_words,
163
+ **kwargs,
164
+ )
165
+
166
+ self.vocab_file = vocab_file
167
+ self.encoder = load_json(vocab_file)
168
+ self.decoder = {v: k for k, v in self.encoder.items()}
169
+ self.spm_file = spm_file
170
+ self.sp_model = load_spm(spm_file, self.sp_model_kwargs)
171
+
172
+ self.encoder_size = len(self.encoder)
173
+
174
+ self.lang_token_to_id = {
175
+ self.get_lang_token(lang_code): self.encoder_size + i
176
+ for i, lang_code in enumerate(fairseq_language_code)
177
+ }
178
+ self.lang_code_to_id = {
179
+ lang_code: self.encoder_size + i
180
+ for i, lang_code in enumerate(fairseq_language_code)
181
+ }
182
+ self.id_to_lang_token = {v: k for k, v in self.lang_token_to_id.items()}
183
+
184
+ self._tgt_lang = tgt_lang if tgt_lang is not None else "en"
185
+ self.cur_lang_id = self.get_lang_id(self._tgt_lang)
186
+ self.set_lang_special_tokens(self._tgt_lang)
187
+
188
+ self.num_madeup_words = num_madeup_words
189
+
190
+ @property
191
+ def vocab_size(self) -> int:
192
+ return len(self.encoder) + len(self.lang_token_to_id) + self.num_madeup_words
193
+
194
+ @property
195
+ def tgt_lang(self) -> str:
196
+ return self._tgt_lang
197
+
198
+ @tgt_lang.setter
199
+ def tgt_lang(self, new_tgt_lang: str) -> None:
200
+ self._tgt_lang = new_tgt_lang
201
+ self.set_lang_special_tokens(self._tgt_lang)
202
+
203
+ def _tokenize(self, text: str) -> List[str]:
204
+ return self.sp_model.encode(text, out_type=str)
205
+
206
+ def _convert_token_to_id(self, token):
207
+ if token in self.lang_token_to_id:
208
+ return self.lang_token_to_id[token]
209
+ return self.encoder.get(token, self.encoder[self.unk_token])
210
+
211
+ def _convert_id_to_token(self, index: int) -> str:
212
+ """Converts an index (integer) in a token (str) using the decoder."""
213
+ if index in self.id_to_lang_token:
214
+ return self.id_to_lang_token[index]
215
+ return self.decoder.get(index, self.unk_token)
216
+
217
+ def convert_tokens_to_string(self, tokens: List[str]) -> str:
218
+ """Converts a sequence of tokens (strings for sub-words) in a single string."""
219
+ return self.sp_model.decode(tokens)
220
+
221
+ def get_special_tokens_mask(
222
+ self,
223
+ token_ids_0: List[int],
224
+ token_ids_1: Optional[List[int]] = None,
225
+ already_has_special_tokens: bool = False,
226
+ ) -> List[int]:
227
+ """
228
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
229
+ special tokens using the tokenizer `prepare_for_model` method.
230
+ Args:
231
+ token_ids_0 (`List[int]`):
232
+ List of IDs.
233
+ token_ids_1 (`List[int]`, *optional*):
234
+ Optional second list of IDs for sequence pairs.
235
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
236
+ Whether or not the token list is already formatted with special tokens for the model.
237
+ Returns:
238
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
239
+ """
240
+
241
+ if already_has_special_tokens:
242
+ return super().get_special_tokens_mask(
243
+ token_ids_0=token_ids_0,
244
+ token_ids_1=token_ids_1,
245
+ already_has_special_tokens=True,
246
+ )
247
+
248
+ prefix_ones = [1] * len(self.prefix_tokens)
249
+ suffix_ones = [1] * len(self.suffix_tokens)
250
+ if token_ids_1 is None:
251
+ return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones
252
+ return (
253
+ prefix_ones
254
+ + ([0] * len(token_ids_0))
255
+ + ([0] * len(token_ids_1))
256
+ + suffix_ones
257
+ )
258
+
259
+ def build_inputs_with_special_tokens(
260
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
261
+ ) -> List[int]:
262
+ """
263
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
264
+ adding special tokens. An MBART sequence has the following format, where `X` represents the sequence:
265
+ - `input_ids` (for encoder) `X [eos, src_lang_code]`
266
+ - `decoder_input_ids`: (for decoder) `X [eos, tgt_lang_code]`
267
+ BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a
268
+ separator.
269
+ Args:
270
+ token_ids_0 (`List[int]`):
271
+ List of IDs to which the special tokens will be added.
272
+ token_ids_1 (`List[int]`, *optional*):
273
+ Optional second list of IDs for sequence pairs.
274
+ Returns:
275
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
276
+ """
277
+ if token_ids_1 is None:
278
+ if self.prefix_tokens is None:
279
+ return token_ids_0 + self.suffix_tokens
280
+ else:
281
+ return self.prefix_tokens + token_ids_0 + self.suffix_tokens
282
+ # We don't expect to process pairs, but leave the pair logic for API consistency
283
+ if self.prefix_tokens is None:
284
+ return token_ids_0 + token_ids_1 + self.suffix_tokens
285
+ else:
286
+ return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens
287
+
288
+ def get_vocab(self) -> Dict:
289
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
290
+ vocab.update(self.added_tokens_encoder)
291
+ return vocab
292
+
293
+ def __getstate__(self) -> Dict:
294
+ state = self.__dict__.copy()
295
+ state["sp_model"] = None
296
+ return state
297
+
298
+ def __setstate__(self, d: Dict) -> None:
299
+ self.__dict__ = d
300
+
301
+ # for backward compatibility
302
+ if not hasattr(self, "sp_model_kwargs"):
303
+ self.sp_model_kwargs = {}
304
+
305
+ self.sp_model = load_spm(self.spm_file, self.sp_model_kwargs)
306
+
307
+ def save_vocabulary(
308
+ self, save_directory: str, filename_prefix: Optional[str] = None
309
+ ) -> Tuple[str]:
310
+ save_dir = Path(save_directory)
311
+ if not save_dir.is_dir():
312
+ raise OSError(f"{save_directory} should be a directory")
313
+ vocab_save_path = save_dir / (
314
+ (filename_prefix + "-" if filename_prefix else "")
315
+ + self.vocab_files_names["vocab_file"]
316
+ )
317
+ spm_save_path = save_dir / (
318
+ (filename_prefix + "-" if filename_prefix else "")
319
+ + self.vocab_files_names["spm_file"]
320
+ )
321
+
322
+ save_json(self.encoder, vocab_save_path)
323
+
324
+ if os.path.abspath(self.spm_file) != os.path.abspath(
325
+ spm_save_path
326
+ ) and os.path.isfile(self.spm_file):
327
+ copyfile(self.spm_file, spm_save_path)
328
+ elif not os.path.isfile(self.spm_file):
329
+ with open(spm_save_path, "wb") as fi:
330
+ content_spiece_model = self.sp_model.serialized_model_proto()
331
+ fi.write(content_spiece_model)
332
+
333
+ return (str(vocab_save_path), str(spm_save_path))
334
+
335
+ def prepare_seq2seq_batch(
336
+ self,
337
+ src_texts: List[str],
338
+ tgt_texts: Optional[List[str]] = None,
339
+ tgt_lang: str = "ro",
340
+ **kwargs,
341
+ ) -> BatchEncoding:
342
+ self.tgt_lang = tgt_lang
343
+ self.set_lang_special_tokens(self.tgt_lang)
344
+ return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs)
345
+
346
+ def _build_translation_inputs(
347
+ self, raw_inputs, tgt_lang: Optional[str], **extra_kwargs
348
+ ):
349
+ """Used by translation pipeline, to prepare inputs for the generate function"""
350
+ if tgt_lang is None:
351
+ raise ValueError("Translation requires a `tgt_lang` for this model")
352
+ self.tgt_lang = tgt_lang
353
+ inputs = self(raw_inputs, add_special_tokens=True, **extra_kwargs)
354
+ return inputs
355
+
356
+ def _switch_to_input_mode(self):
357
+ self.set_lang_special_tokens(self.tgt_lang)
358
+
359
+ def _switch_to_target_mode(self):
360
+ self.prefix_tokens = None
361
+ self.suffix_tokens = [self.eos_token_id]
362
+
363
+ def set_lang_special_tokens(self, src_lang: str) -> None:
364
+ """Reset the special tokens to the tgt lang setting. No prefix and suffix=[eos, tgt_lang_code]."""
365
+ lang_token = self.get_lang_token(src_lang)
366
+ self.cur_lang_id = self.lang_token_to_id[lang_token]
367
+ self.prefix_tokens = [self.cur_lang_id]
368
+ self.suffix_tokens = [self.eos_token_id]
369
+
370
+ def get_lang_token(self, lang: str) -> str:
371
+ return self.lang_code_to_token[lang]
372
+
373
+ def get_lang_id(self, lang: str) -> int:
374
+ lang_token = self.get_lang_token(lang)
375
+ return self.lang_token_to_id[lang_token]
376
+
377
+
378
+ def load_spm(
379
+ path: str, sp_model_kwargs: Dict[str, Any]
380
+ ) -> sentencepiece.SentencePieceProcessor:
381
+ spm = sentencepiece.SentencePieceProcessor(**sp_model_kwargs)
382
+ spm.Load(str(path))
383
+ return spm
384
+
385
+
386
+ def load_json(path: str) -> Union[Dict, List]:
387
+ with open(path, "r") as f:
388
+ return json.load(f)
389
+
390
+
391
+ def save_json(data, path: str) -> None:
392
+ with open(path, "w") as f:
393
+ json.dump(data, f, indent=2)