Spaces:
Runtime error
Runtime error
Jesse Alter
commited on
Commit
·
4604714
1
Parent(s):
c3dc4b3
add missing pieces
Browse files- app.py +28 -18
- requirements.txt +1 -0
app.py
CHANGED
@@ -1,25 +1,18 @@
|
|
1 |
# AUTOGENERATED! DO NOT EDIT! File to edit: os_identify.ipynb.
|
2 |
|
3 |
# %% auto 0
|
4 |
-
__all__ = ['
|
|
|
5 |
|
6 |
# %% os_identify.ipynb 4
|
7 |
from fastai.vision.all import *
|
8 |
-
from fastai.vision.widgets import *
|
9 |
import gradio as gr
|
10 |
|
11 |
-
# %% os_identify.ipynb 5
|
12 |
-
def on_click_classify(change):
|
13 |
-
img = PILImage.create(btn_upload.data[-1])
|
14 |
-
out_pl.clear_output()
|
15 |
-
with out_pl: display(img.to_thumb(128,128))
|
16 |
-
pred,pred_idx,probs = learn_inf.predict(btn_upload.data[-1])
|
17 |
-
lbl_pred.value = f'Prediction: {pred}; Probability: {probs[pred_idx]:.04f}'
|
18 |
-
|
19 |
# %% os_identify.ipynb 6
|
20 |
-
btn_upload = widgets.FileUpload()
|
21 |
-
btn_run = widgets.Button(description='Classify')
|
22 |
-
btn_run.on_click(on_click_classify)
|
23 |
|
24 |
# %% os_identify.ipynb 7
|
25 |
# load the model
|
@@ -27,11 +20,28 @@ path = Path()
|
|
27 |
learn_inf = load_learner(path/'os_model.pkl')
|
28 |
|
29 |
# %% os_identify.ipynb 8
|
30 |
-
out_pl = widgets.Output()
|
31 |
-
out_pl.clear_output()
|
32 |
-
lbl_pred = widgets.Label()
|
33 |
|
34 |
|
35 |
# %% os_identify.ipynb 9
|
36 |
-
VBox([widgets.Label('Select your screencap!'),
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# AUTOGENERATED! DO NOT EDIT! File to edit: os_identify.ipynb.
|
2 |
|
3 |
# %% auto 0
|
4 |
+
__all__ = ['path', 'learn_inf', 'title', 'description', 'article', 'examples', 'interpretation', 'enable_queue', 'labels',
|
5 |
+
'predict']
|
6 |
|
7 |
# %% os_identify.ipynb 4
|
8 |
from fastai.vision.all import *
|
9 |
+
# from fastai.vision.widgets import *
|
10 |
import gradio as gr
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
# %% os_identify.ipynb 6
|
13 |
+
# btn_upload = widgets.FileUpload()
|
14 |
+
# btn_run = widgets.Button(description='Classify')
|
15 |
+
# btn_run.on_click(on_click_classify)
|
16 |
|
17 |
# %% os_identify.ipynb 7
|
18 |
# load the model
|
|
|
20 |
learn_inf = load_learner(path/'os_model.pkl')
|
21 |
|
22 |
# %% os_identify.ipynb 8
|
23 |
+
# out_pl = widgets.Output()
|
24 |
+
# out_pl.clear_output()
|
25 |
+
# lbl_pred = widgets.Label()
|
26 |
|
27 |
|
28 |
# %% os_identify.ipynb 9
|
29 |
+
# VBox([widgets.Label('Select your screencap!'),
|
30 |
+
# btn_upload, btn_run, out_pl, lbl_pred])
|
31 |
+
|
32 |
+
# %% os_identify.ipynb 10
|
33 |
+
title = "Operating System Screencap Classifier"
|
34 |
+
description = "A classifier trained on various operating system screenshots. For better results, use screenshots that clearly show unique UI elements. For best results, help me better a better dataset."
|
35 |
+
article="<p>article goes here</p>"
|
36 |
+
examples=['win95.jpg']
|
37 |
+
interpretation="default"
|
38 |
+
enable_queue=True
|
39 |
+
|
40 |
+
# %% os_identify.ipynb 11
|
41 |
+
labels = learn_inf.dls.vocab
|
42 |
+
def predict(img):
|
43 |
+
# img = PILImage.create(img)
|
44 |
+
pred,pred_idx,probs = learn_inf.predict(img)
|
45 |
+
return {labels[i]: float(probs[i]) for i in range(len(labels))}
|
46 |
+
gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(512, 512)),outputs=gr.outputs.Label(num_top_classes=3),title=title,description=description,article=article,examples=examples,interpretation=interpretation,enable_queue=enable_queue).launch(share=True)
|
47 |
+
# gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(512, 512)), outputs=gr.outputs.Label(num_top_classes=3)).launch(share=True)
|
requirements.txt
CHANGED
@@ -1,2 +1,3 @@
|
|
1 |
fastai
|
2 |
gradio
|
|
|
|
1 |
fastai
|
2 |
gradio
|
3 |
+
scikit-image
|