Spaces:
Paused
Paused
| import spaces # type: ignore | |
| import os | |
| import uuid | |
| from PIL import Image | |
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import torch | |
| from diffusers import FluxPipeline | |
| from sd_embed.embedding_funcs import get_weighted_text_embeddings_flux1 | |
| dtype = torch.bfloat16 | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| pipe = FluxPipeline.from_pretrained( | |
| "black-forest-labs/FLUX.1-dev", | |
| torch_dtype=dtype, | |
| ) | |
| pipe.to(device) | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 2048 | |
| def infer( | |
| prompt: str, | |
| seed=42, | |
| randomize_seed=False, | |
| width=1024, | |
| height=1024, | |
| guidance_scale=5.0, | |
| num_inference_steps=28, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator().manual_seed(seed) | |
| prompt_embeds, pooled_prompt_embeds = get_weighted_text_embeddings_flux1( | |
| pipe=pipe, prompt=prompt | |
| ) | |
| image = pipe( | |
| prompt_embeds=prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| width=width, | |
| height=height, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| guidance_scale=guidance_scale, | |
| ).images[0] | |
| assert isinstance( | |
| image, Image.Image | |
| ), "The output is not an instance of Image.Image" | |
| filepath = os.path.join("images", "{uuid}.png".format(uuid=str(uuid.uuid4().hex))) | |
| image.save(filepath) | |
| return ( | |
| image, | |
| gr.DownloadButton( | |
| label="Download PNG", value=filepath, size="sm", visible=True | |
| ), | |
| seed, | |
| ) | |
| examples = [ | |
| "a cat holding a sign that says flux.1 is great", | |
| "an old man holding a sign that says Increase Zero-GPU Limit", | |
| ] | |
| css = """ | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 520px; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown("""# FLUX.1 | |
| 12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) | |
| [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)] | |
| """) | |
| with gr.Row(equal_height=False): | |
| with gr.Column(): | |
| prompt = gr.TextArea( | |
| label="Prompt", | |
| show_label=False, | |
| lines=3, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", variant="primary", scale=0) | |
| result = gr.Image( | |
| format="webp", | |
| type="pil", | |
| label="Result", | |
| show_label=False, | |
| show_download_button=False, | |
| show_share_button=False, | |
| ) | |
| download = gr.DownloadButton(size="sm", visible=False) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=832, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1216, | |
| ) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Guidance Scale", | |
| minimum=0, | |
| maximum=15, | |
| step=0.1, | |
| value=3.5, | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=50, | |
| step=1, | |
| value=28, | |
| ) | |
| gr.Examples( | |
| examples=examples, | |
| fn=infer, | |
| inputs=[prompt], | |
| outputs=[result, download, seed], | |
| cache_examples="lazy", | |
| ) | |
| gr.on( | |
| triggers=[run_button.click], | |
| fn=lambda: gr.update(visible=False), | |
| outputs=download, | |
| api_name=False, | |
| ) | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit], | |
| fn=infer, | |
| inputs=[ | |
| prompt, | |
| seed, | |
| randomize_seed, | |
| width, | |
| height, | |
| guidance_scale, | |
| num_inference_steps, | |
| ], | |
| outputs=[result, download, seed], | |
| ) | |
| if __name__ == "__main__": | |
| os.makedirs("images", exist_ok=True) | |
| demo.queue(api_open=True).launch() | |