buster-dev / buster /examples /gradio_app.py
jerpint's picture
isort
2a13c73
import cfg
import gradio as gr
import pandas as pd
from buster.busterbot import Buster
from buster.retriever import Retriever
from buster.utils import get_retriever_from_extension
# initialize buster with the config in config.py (adapt to your needs) ...
retriever: Retriever = get_retriever_from_extension(cfg.documents_filepath)(cfg.documents_filepath)
buster: Buster = Buster(cfg=cfg.buster_cfg, retriever=retriever)
def format_sources(matched_documents: pd.DataFrame) -> str:
if len(matched_documents) == 0:
return ""
sourced_answer_template: str = (
"""πŸ“ Here are the sources I used to answer your question:<br>""" """{sources}<br><br>""" """{footnote}"""
)
source_template: str = """[πŸ”— {source.title}]({source.url}), relevance: {source.similarity:2.1f} %"""
matched_documents.similarity = matched_documents.similarity * 100
sources = "<br>".join([source_template.format(source=source) for _, source in matched_documents.iterrows()])
footnote: str = "I'm a bot πŸ€– and not always perfect."
return sourced_answer_template.format(sources=sources, footnote=footnote)
def chat(question, history):
history = history or []
response = buster.process_input(question)
# formatted_sources = source_formatter(sources)
matched_documents = response.matched_documents
formatted_sources = format_sources(matched_documents)
formatted_response = f"{response.completion.text}<br><br>" + formatted_sources
history.append((question, formatted_response))
return history, history
block = gr.Blocks(css="#chatbot .overflow-y-auto{height:500px}")
with block:
with gr.Row():
gr.Markdown("<h3><center>Buster πŸ€–: A Question-Answering Bot for your documentation</center></h3>")
chatbot = gr.Chatbot()
with gr.Row():
message = gr.Textbox(
label="What's your question?",
placeholder="Ask a question to AI stackoverflow here...",
lines=1,
)
submit = gr.Button(value="Send", variant="secondary").style(full_width=False)
examples = gr.Examples(
examples=[
"How can I perform backpropagation?",
"How do I deal with noisy data?",
],
inputs=message,
)
gr.Markdown("This application uses GPT to search the docs for relevant info and answer questions.")
gr.HTML("️<center> Created with ❀️ by @jerpint and @hadrienbertrand")
state = gr.State()
agent_state = gr.State()
submit.click(chat, inputs=[message, state], outputs=[chatbot, state])
message.submit(chat, inputs=[message, state], outputs=[chatbot, state])
block.launch(debug=True, share=False)