GECO2-demo / models /counter.py
jerpelhan's picture
Initial commit
6146368
import numpy as np
import skimage
import torch
from hydra import compose
from hydra.utils import instantiate
from omegaconf import OmegaConf
from torch import nn
from torch.nn import functional as F
from torchvision.ops import roi_align
from utils.box_ops import boxes_with_scores
from .box_corr import Box_correction
from .prompt_encoder import PromptEncoder
from .query_generator import C_base
class CNT(nn.Module):
def __init__(
self,
image_size: int,
num_objects: int,
emb_dim: int,
kernel_dim: int,
reduction: int,
zero_shot: bool,
training: bool,
):
super(CNT, self).__init__()
self.validate = not training
self.emb_dim = emb_dim
self.num_objects = num_objects
self.reduction = reduction
self.kernel_dim = kernel_dim
self.image_size = image_size
self.zero_shot = zero_shot
self.pretrain = False
# torch.hub.set_dir('/d/hpc/projects/FRI/pelhanj/CNT_SAM2/models/')
self.class_embed = nn.Sequential(nn.Linear(emb_dim, 1), nn.LeakyReLU())
self.bbox_embed = MLP(emb_dim, emb_dim, 4, 3)
if not self.pretrain:
self.class_embed_aux = nn.Sequential(nn.Linear(emb_dim, 1), nn.LeakyReLU())
self.bbox_embed_aux = MLP(emb_dim, emb_dim, 4, 3)
self.adapt_features = C_base(
transformer_dim=self.emb_dim,
num_prototype_attn_steps=3,
num_image_attn_steps=2,
)
self.sam_prompt_encoder = PromptEncoder(
embed_dim=self.emb_dim,
image_embedding_size=(
self.image_size // self.reduction,
self.image_size // self.reduction,
),
input_image_size=(self.image_size, self.image_size),
mask_in_chans=16,
)
config_name = '../configs/sam2_hiera_base_plus.yaml'
cfg = compose(config_name=config_name)
OmegaConf.resolve(cfg)
self.backbone = instantiate(cfg.backbone, _recursive_=True)
checkpoint = torch.hub.load_state_dict_from_url(
'https://dl.fbaipublicfiles.com/segment_anything_2/072824/' + config_name.split('/')[-1].replace('.yaml',
'.pt'),
map_location="cpu"
)['model']
state_dict = {k.replace("image_encoder.", ""): v for k, v in checkpoint.items()}
self.backbone.load_state_dict(state_dict, strict=False)
self.shape_or_objectness = nn.Sequential(
nn.Linear(2, 64),
nn.ReLU(),
nn.Linear(64, emb_dim),
nn.ReLU(),
nn.Linear(emb_dim, 1 ** 2 * emb_dim)
)
if self.validate:
self.box_correction = Box_correction(reduction,image_size,emb_dim)
def forward(self, x, bboxes, tiled=False):
num_objects = bboxes.size(1) if not self.zero_shot else self.num_objects
with torch.no_grad():
feats = self.backbone(x)
src = feats['vision_features']
bs, c, w, h = src.shape
self.reduction = 1024 / w
bboxes_roi = torch.cat([
torch.arange(
bs, requires_grad=False
).to(bboxes.device).repeat_interleave(num_objects).reshape(-1, 1),
bboxes.flatten(0, 1),
], dim=1)
self.kernel_dim = 1
# # NORMAL
exemplars = roi_align(
src,
boxes=bboxes_roi, output_size=self.kernel_dim,
spatial_scale=1.0 / self.reduction, aligned=True
).permute(0, 2, 3, 1).reshape(bs, num_objects * self.kernel_dim ** 2, self.emb_dim)
l1 = feats['backbone_fpn'][0]
l2 = feats['backbone_fpn'][1]
exemplars_l1 = roi_align(
l1,
boxes=bboxes_roi, output_size=self.kernel_dim,
spatial_scale=1.0 / self.reduction * 2 * 2, aligned=True
).permute(0, 2, 3, 1).reshape(bs, num_objects * self.kernel_dim ** 2, self.emb_dim)
exemplars_l2 = roi_align(
l2,
boxes=bboxes_roi, output_size=self.kernel_dim,
spatial_scale=1.0 / self.reduction * 2, aligned=True
).permute(0, 2, 3, 1).reshape(bs, num_objects * self.kernel_dim ** 2, self.emb_dim)
box_hw = torch.zeros(bboxes.size(0), bboxes.size(1), 2).to(bboxes.device)
box_hw[:, :, 0] = bboxes[:, :, 2] - bboxes[:, :, 0]
box_hw[:, :, 1] = bboxes[:, :, 3] - bboxes[:, :, 1]
# Encode shape
shape = self.shape_or_objectness(box_hw).reshape(
bs, -1, self.emb_dim
)
prototype_embeddings = torch.cat([exemplars, shape], dim=1)
prototype_embeddings_l1 = torch.cat([exemplars_l1, shape], dim=1)
prototype_embeddings_l2 = torch.cat([exemplars_l2, shape], dim=1)
hq_prototype_embeddings = [prototype_embeddings_l1, prototype_embeddings_l2]
# adapt image feature with prototypes
adapted_f, adapted_f_aux = self.adapt_features(
image_embeddings=src,
image_pe=self.sam_prompt_encoder.get_dense_pe(),
prototype_embeddings=prototype_embeddings,
hq_features=feats['backbone_fpn'],
hq_prototypes=hq_prototype_embeddings,
hq_pos=feats['vision_pos_enc'],
)
# Predict class [fg, bg] and l,r,t,b
bs, c, w, h = adapted_f.shape
adapted_f = adapted_f.view(bs, self.emb_dim, -1).permute(0, 2, 1)
centerness = self.class_embed(adapted_f).view(bs, w, h, 1).permute(0, 3, 1, 2)
outputs_coord = self.bbox_embed(adapted_f).sigmoid().view(bs, w, h, 4).permute(0, 3, 1, 2)
outputs, ref_points = boxes_with_scores(centerness, outputs_coord, sort=False, validate=self.validate)
if not self.pretrain:
adapted_f_aux = adapted_f_aux.view(bs, self.emb_dim, -1).permute(0, 2, 1)
centerness_aux = self.class_embed_aux(adapted_f_aux).view(bs, w, h, 1).permute(0, 3, 1, 2)
outputs_coord_aux = self.bbox_embed_aux(adapted_f_aux).sigmoid().view(bs, w, h, 4).permute(0, 3, 1, 2)
outputs_aux, ref_points_aux = boxes_with_scores(centerness_aux, outputs_coord_aux, sort=False, validate=self.validate)
if self.validate:
outputs = self.box_correction(feats, outputs, x)
else:
for i in range(len(outputs)):
outputs[i]["scores"] = outputs[i]["box_v"]
if self.pretrain:
return outputs, ref_points, centerness, outputs_coord
else:
return outputs, ref_points, centerness, outputs_coord, (outputs_aux, ref_points_aux, centerness_aux, outputs_coord_aux)
class MLP(nn.Module):
""" Very simple multi-layer perceptron (also called FFN)"""
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
super().__init__()
self.num_layers = num_layers
h = [hidden_dim] * (num_layers - 1)
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
def forward(self, x):
for i, layer in enumerate(self.layers):
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
return x
def build_model(args):
assert args.reduction in [4, 8, 16]
return CNT(
image_size=args.image_size,
num_objects=args.num_objects,
zero_shot=args.zero_shot,
emb_dim=args.emb_dim,
reduction=args.reduction,
kernel_dim=args.kernel_dim,
training=args.training
)