jerome-white's picture
Request HDI as a percentage
b6d9aa8
raw
history blame
6.96 kB
import math
import operator as op
import itertools as it
import functools as ft
import collections as cl
from pathlib import Path
from dataclasses import fields, asdict
import pandas as pd
import gradio as gr
import seaborn as sns
import matplotlib.pyplot as plt
from datasets import load_dataset
from scipy.special import expit
from hdinterval import HDI, HDInterval
TabGroup = cl.namedtuple('TabGroup', 'name, docs, dataset')
#
#
#
def load(repo):
parameter = 'parameter'
model = 'model'
items = [
'chain',
'sample',
parameter,
model,
'value',
]
dataset = load_dataset(str(repo))
return (dataset
.get('train')
.to_pandas()
.rename(columns={'element': model})
.filter(items=items)
.query(f'{parameter} == "alpha"')
.drop(columns=parameter))
def summarize(df, ci=0.95):
def _aggregate(i, g):
values = g['value']
hdi = HDInterval(values)
interval = hdi(ci)
agg = {
'model': i,
'ability': values.median(),
'uncertainty': interval.width(),
}
agg.update(asdict(interval))
return agg
groups = df.groupby('model', sort=False)
records = it.starmap(_aggregate, groups)
return pd.DataFrame.from_records(records)
def rank(df, ascending, name='rank'):
df = (df
.sort_values(by=['ability', 'uncertainty'],
ascending=[ascending, not ascending])
.drop(columns='uncertainty')
.reset_index(drop=True))
df.index += 1
return df.reset_index(names=name)
def compare(df, model_1, model_2):
mcol = 'model'
models = [
model_1,
model_2,
]
view = (df
.query(f'{mcol} in @models')
.pivot(index=['chain', 'sample'],
columns=mcol,
values='value'))
return expit(view[model_1] - view[model_2])
#
#
#
class DataPlotter:
def __init__(self, df):
self.df = df
def plot(self):
fig = plt.figure(dpi=200)
ax = fig.gca()
self.draw(ax)
ax.grid(visible=True,
axis='both',
alpha=0.25,
linestyle='dotted')
fig.tight_layout()
return fig
def draw(self, ax):
raise NotImplementedError()
class RankPlotter(DataPlotter):
_y = 'y'
@ft.cached_property
def y(self):
return self.df[self._y]
def __init__(self, df, top=10):
view = rank(summarize(df), True, self._y)
view = (view
.tail(top)
.sort_values(by=self._y, ascending=False))
super().__init__(view)
def draw(self, ax):
self.df.plot.scatter('ability', self._y, ax=ax)
ax.hlines(self.y,
xmin=self.df['lower'],
xmax=self.df['upper'],
alpha=0.5)
ax.set_xlabel(ax.get_xlabel().title())
ax.set_ylabel('')
ax.set_yticks(self.y, self.df['model'])
class ComparisonPlotter(DataPlotter):
def __init__(self, df, model_1, model_2, ci):
super().__init__(compare(df, model_1, model_2))
self.hdi = HDInterval(self.df)
self.ci = ci
def draw(self, ax):
interval = self.hdi(self.ci)
sns.ecdfplot(self.df, ax=ax)
(_, color, *_) = sns.color_palette()
ax.axvline(x=self.df.median(),
color=color,
linestyle='dashed')
ax.axvspan(xmin=interval.lower,
xmax=interval.upper,
alpha=0.15,
color=color)
ax.set_xlabel('Pr(M$_{1}$ \u003E M$_{2}$)')
try:
ci_mid = self.hdi.at(0.5)
ax.text(x=0.01,
y=0.99,
s=f'0.5-min HDI: {ci_mid:.0%}',
horizontalalignment='left',
verticalalignment='top',
transform=ax.transAxes)
except ArithmeticError:
pass
class ComparisonMenu:
def __init__(self, df, ci=95):
self.df = df
self.ci = ci
def __call__(self, model_1, model_2, ci):
ci /= 100
cp = ComparisonPlotter(self.df, model_1, model_2, ci)
return cp.plot()
def build_and_get(self):
models = self.df['model'].unique()
choices = sorted(models, key=lambda x: x.lower())
for i in range(1, 3):
label = f'Model {i}'
yield gr.Dropdown(label=label, choices=choices)
yield gr.Number(value=self.ci,
label='HDI (%)',
minimum=0,
maximum=100)
#
#
#
class DocumentationReader:
_suffix = '.md'
def __init__(self, root):
self.root = root
def __getitem__(self, item):
return (self
.root
.joinpath(item)
.with_suffix(self._suffix)
.read_text())
#
#
#
def layout(tab):
df = load(Path('jerome-white', tab.dataset))
docs = DocumentationReader(Path('docs', t.docs))
with gr.Row():
with gr.Column():
gr.Markdown(docs['readme'])
with gr.Column():
plotter = RankPlotter(df)
gr.Plot(plotter.plot())
with gr.Row():
view = rank(summarize(df), False)
columns = { x.name: f'HDI {x.name}' for x in fields(HDI) }
for i in view.columns:
columns.setdefault(i, i.title())
view = (view
.rename(columns=columns)
.style.format(precision=4))
gr.Dataframe(view)
with gr.Row():
with gr.Column(scale=3):
display = gr.Plot()
with gr.Row():
with gr.Column():
gr.Markdown('''
Probability that Model 1 is preferred to Model 2. The
solid blue curve is a CDF of that distribution;
formally the inverse logit of the difference in model
abilities. The dashed orange vertical line is the
median, while the band surrounding it is the [highest
density
interval](https://cran.r-project.org/package=HDInterval)
of your choice (default 95%).
''')
with gr.Column():
menu = ComparisonMenu(df)
inputs = list(menu.build_and_get())
button = gr.Button(value='Compare!')
button.click(menu, inputs=inputs, outputs=[display])
with gr.Accordion('Disclaimer', open=False):
gr.Markdown(docs['disclaimer'])
#
#
#
with gr.Blocks() as demo:
tabs = it.starmap(TabGroup, (
('Alpaca', 'alpaca', 'alpaca-bt-stan'),
('Chatbot Arena', 'arena', 'arena-bt-stan'),
))
for t in tabs:
with gr.Tab(t.name):
layout(t)
demo.launch()